Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  indf1ofs Structured version   Visualization version   GIF version

Theorem indf1ofs 30088
Description: The bijection between finite subsets and the indicator functions with finite support. (Contributed by Thierry Arnoux, 22-Aug-2017.)
Assertion
Ref Expression
indf1ofs (𝑂𝑉 → ((𝟭‘𝑂) ↾ Fin):(𝒫 𝑂 ∩ Fin)–1-1-onto→{𝑓 ∈ ({0, 1} ↑𝑚 𝑂) ∣ (𝑓 “ {1}) ∈ Fin})
Distinct variable group:   𝑓,𝑂
Allowed substitution hint:   𝑉(𝑓)

Proof of Theorem indf1ofs
Dummy variables 𝑎 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 indf1o 30086 . . . 4 (𝑂𝑉 → (𝟭‘𝑂):𝒫 𝑂1-1-onto→({0, 1} ↑𝑚 𝑂))
2 f1of1 6136 . . . 4 ((𝟭‘𝑂):𝒫 𝑂1-1-onto→({0, 1} ↑𝑚 𝑂) → (𝟭‘𝑂):𝒫 𝑂1-1→({0, 1} ↑𝑚 𝑂))
31, 2syl 17 . . 3 (𝑂𝑉 → (𝟭‘𝑂):𝒫 𝑂1-1→({0, 1} ↑𝑚 𝑂))
4 inss1 3833 . . 3 (𝒫 𝑂 ∩ Fin) ⊆ 𝒫 𝑂
5 f1ores 6151 . . 3 (((𝟭‘𝑂):𝒫 𝑂1-1→({0, 1} ↑𝑚 𝑂) ∧ (𝒫 𝑂 ∩ Fin) ⊆ 𝒫 𝑂) → ((𝟭‘𝑂) ↾ (𝒫 𝑂 ∩ Fin)):(𝒫 𝑂 ∩ Fin)–1-1-onto→((𝟭‘𝑂) “ (𝒫 𝑂 ∩ Fin)))
63, 4, 5sylancl 694 . 2 (𝑂𝑉 → ((𝟭‘𝑂) ↾ (𝒫 𝑂 ∩ Fin)):(𝒫 𝑂 ∩ Fin)–1-1-onto→((𝟭‘𝑂) “ (𝒫 𝑂 ∩ Fin)))
7 resres 5409 . . . 4 (((𝟭‘𝑂) ↾ 𝒫 𝑂) ↾ Fin) = ((𝟭‘𝑂) ↾ (𝒫 𝑂 ∩ Fin))
8 f1ofn 6138 . . . . . 6 ((𝟭‘𝑂):𝒫 𝑂1-1-onto→({0, 1} ↑𝑚 𝑂) → (𝟭‘𝑂) Fn 𝒫 𝑂)
9 fnresdm 6000 . . . . . 6 ((𝟭‘𝑂) Fn 𝒫 𝑂 → ((𝟭‘𝑂) ↾ 𝒫 𝑂) = (𝟭‘𝑂))
101, 8, 93syl 18 . . . . 5 (𝑂𝑉 → ((𝟭‘𝑂) ↾ 𝒫 𝑂) = (𝟭‘𝑂))
1110reseq1d 5395 . . . 4 (𝑂𝑉 → (((𝟭‘𝑂) ↾ 𝒫 𝑂) ↾ Fin) = ((𝟭‘𝑂) ↾ Fin))
127, 11syl5eqr 2670 . . 3 (𝑂𝑉 → ((𝟭‘𝑂) ↾ (𝒫 𝑂 ∩ Fin)) = ((𝟭‘𝑂) ↾ Fin))
13 eqidd 2623 . . 3 (𝑂𝑉 → (𝒫 𝑂 ∩ Fin) = (𝒫 𝑂 ∩ Fin))
14 simpll 790 . . . . . . . . . 10 (((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) ∧ ((𝟭‘𝑂)‘𝑎) = 𝑔) → 𝑂𝑉)
15 simpr 477 . . . . . . . . . . . . . . 15 ((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) → 𝑎 ∈ (𝒫 𝑂 ∩ Fin))
164, 15sseldi 3601 . . . . . . . . . . . . . 14 ((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) → 𝑎 ∈ 𝒫 𝑂)
1716elpwid 4170 . . . . . . . . . . . . 13 ((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) → 𝑎𝑂)
18 indf 30077 . . . . . . . . . . . . 13 ((𝑂𝑉𝑎𝑂) → ((𝟭‘𝑂)‘𝑎):𝑂⟶{0, 1})
1917, 18syldan 487 . . . . . . . . . . . 12 ((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) → ((𝟭‘𝑂)‘𝑎):𝑂⟶{0, 1})
2019adantr 481 . . . . . . . . . . 11 (((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) ∧ ((𝟭‘𝑂)‘𝑎) = 𝑔) → ((𝟭‘𝑂)‘𝑎):𝑂⟶{0, 1})
21 simpr 477 . . . . . . . . . . . 12 (((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) ∧ ((𝟭‘𝑂)‘𝑎) = 𝑔) → ((𝟭‘𝑂)‘𝑎) = 𝑔)
2221feq1d 6030 . . . . . . . . . . 11 (((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) ∧ ((𝟭‘𝑂)‘𝑎) = 𝑔) → (((𝟭‘𝑂)‘𝑎):𝑂⟶{0, 1} ↔ 𝑔:𝑂⟶{0, 1}))
2320, 22mpbid 222 . . . . . . . . . 10 (((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) ∧ ((𝟭‘𝑂)‘𝑎) = 𝑔) → 𝑔:𝑂⟶{0, 1})
24 prex 4909 . . . . . . . . . . . 12 {0, 1} ∈ V
25 elmapg 7870 . . . . . . . . . . . 12 (({0, 1} ∈ V ∧ 𝑂𝑉) → (𝑔 ∈ ({0, 1} ↑𝑚 𝑂) ↔ 𝑔:𝑂⟶{0, 1}))
2624, 25mpan 706 . . . . . . . . . . 11 (𝑂𝑉 → (𝑔 ∈ ({0, 1} ↑𝑚 𝑂) ↔ 𝑔:𝑂⟶{0, 1}))
2726biimpar 502 . . . . . . . . . 10 ((𝑂𝑉𝑔:𝑂⟶{0, 1}) → 𝑔 ∈ ({0, 1} ↑𝑚 𝑂))
2814, 23, 27syl2anc 693 . . . . . . . . 9 (((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) ∧ ((𝟭‘𝑂)‘𝑎) = 𝑔) → 𝑔 ∈ ({0, 1} ↑𝑚 𝑂))
2921cnveqd 5298 . . . . . . . . . . 11 (((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) ∧ ((𝟭‘𝑂)‘𝑎) = 𝑔) → ((𝟭‘𝑂)‘𝑎) = 𝑔)
3029imaeq1d 5465 . . . . . . . . . 10 (((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) ∧ ((𝟭‘𝑂)‘𝑎) = 𝑔) → (((𝟭‘𝑂)‘𝑎) “ {1}) = (𝑔 “ {1}))
31 indpi1 30082 . . . . . . . . . . . . 13 ((𝑂𝑉𝑎𝑂) → (((𝟭‘𝑂)‘𝑎) “ {1}) = 𝑎)
3217, 31syldan 487 . . . . . . . . . . . 12 ((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) → (((𝟭‘𝑂)‘𝑎) “ {1}) = 𝑎)
33 inss2 3834 . . . . . . . . . . . . 13 (𝒫 𝑂 ∩ Fin) ⊆ Fin
3433, 15sseldi 3601 . . . . . . . . . . . 12 ((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) → 𝑎 ∈ Fin)
3532, 34eqeltrd 2701 . . . . . . . . . . 11 ((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) → (((𝟭‘𝑂)‘𝑎) “ {1}) ∈ Fin)
3635adantr 481 . . . . . . . . . 10 (((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) ∧ ((𝟭‘𝑂)‘𝑎) = 𝑔) → (((𝟭‘𝑂)‘𝑎) “ {1}) ∈ Fin)
3730, 36eqeltrrd 2702 . . . . . . . . 9 (((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) ∧ ((𝟭‘𝑂)‘𝑎) = 𝑔) → (𝑔 “ {1}) ∈ Fin)
3828, 37jca 554 . . . . . . . 8 (((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) ∧ ((𝟭‘𝑂)‘𝑎) = 𝑔) → (𝑔 ∈ ({0, 1} ↑𝑚 𝑂) ∧ (𝑔 “ {1}) ∈ Fin))
3938ex 450 . . . . . . 7 ((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) → (((𝟭‘𝑂)‘𝑎) = 𝑔 → (𝑔 ∈ ({0, 1} ↑𝑚 𝑂) ∧ (𝑔 “ {1}) ∈ Fin)))
4039rexlimdva 3031 . . . . . 6 (𝑂𝑉 → (∃𝑎 ∈ (𝒫 𝑂 ∩ Fin)((𝟭‘𝑂)‘𝑎) = 𝑔 → (𝑔 ∈ ({0, 1} ↑𝑚 𝑂) ∧ (𝑔 “ {1}) ∈ Fin)))
41 cnvimass 5485 . . . . . . . . . 10 (𝑔 “ {1}) ⊆ dom 𝑔
4226biimpa 501 . . . . . . . . . . . 12 ((𝑂𝑉𝑔 ∈ ({0, 1} ↑𝑚 𝑂)) → 𝑔:𝑂⟶{0, 1})
43 fdm 6051 . . . . . . . . . . . 12 (𝑔:𝑂⟶{0, 1} → dom 𝑔 = 𝑂)
4442, 43syl 17 . . . . . . . . . . 11 ((𝑂𝑉𝑔 ∈ ({0, 1} ↑𝑚 𝑂)) → dom 𝑔 = 𝑂)
4544adantrr 753 . . . . . . . . . 10 ((𝑂𝑉 ∧ (𝑔 ∈ ({0, 1} ↑𝑚 𝑂) ∧ (𝑔 “ {1}) ∈ Fin)) → dom 𝑔 = 𝑂)
4641, 45syl5sseq 3653 . . . . . . . . 9 ((𝑂𝑉 ∧ (𝑔 ∈ ({0, 1} ↑𝑚 𝑂) ∧ (𝑔 “ {1}) ∈ Fin)) → (𝑔 “ {1}) ⊆ 𝑂)
47 simprr 796 . . . . . . . . 9 ((𝑂𝑉 ∧ (𝑔 ∈ ({0, 1} ↑𝑚 𝑂) ∧ (𝑔 “ {1}) ∈ Fin)) → (𝑔 “ {1}) ∈ Fin)
48 elfpw 8268 . . . . . . . . 9 ((𝑔 “ {1}) ∈ (𝒫 𝑂 ∩ Fin) ↔ ((𝑔 “ {1}) ⊆ 𝑂 ∧ (𝑔 “ {1}) ∈ Fin))
4946, 47, 48sylanbrc 698 . . . . . . . 8 ((𝑂𝑉 ∧ (𝑔 ∈ ({0, 1} ↑𝑚 𝑂) ∧ (𝑔 “ {1}) ∈ Fin)) → (𝑔 “ {1}) ∈ (𝒫 𝑂 ∩ Fin))
50 indpreima 30087 . . . . . . . . . . 11 ((𝑂𝑉𝑔:𝑂⟶{0, 1}) → 𝑔 = ((𝟭‘𝑂)‘(𝑔 “ {1})))
5150eqcomd 2628 . . . . . . . . . 10 ((𝑂𝑉𝑔:𝑂⟶{0, 1}) → ((𝟭‘𝑂)‘(𝑔 “ {1})) = 𝑔)
5242, 51syldan 487 . . . . . . . . 9 ((𝑂𝑉𝑔 ∈ ({0, 1} ↑𝑚 𝑂)) → ((𝟭‘𝑂)‘(𝑔 “ {1})) = 𝑔)
5352adantrr 753 . . . . . . . 8 ((𝑂𝑉 ∧ (𝑔 ∈ ({0, 1} ↑𝑚 𝑂) ∧ (𝑔 “ {1}) ∈ Fin)) → ((𝟭‘𝑂)‘(𝑔 “ {1})) = 𝑔)
54 fveq2 6191 . . . . . . . . . 10 (𝑎 = (𝑔 “ {1}) → ((𝟭‘𝑂)‘𝑎) = ((𝟭‘𝑂)‘(𝑔 “ {1})))
5554eqeq1d 2624 . . . . . . . . 9 (𝑎 = (𝑔 “ {1}) → (((𝟭‘𝑂)‘𝑎) = 𝑔 ↔ ((𝟭‘𝑂)‘(𝑔 “ {1})) = 𝑔))
5655rspcev 3309 . . . . . . . 8 (((𝑔 “ {1}) ∈ (𝒫 𝑂 ∩ Fin) ∧ ((𝟭‘𝑂)‘(𝑔 “ {1})) = 𝑔) → ∃𝑎 ∈ (𝒫 𝑂 ∩ Fin)((𝟭‘𝑂)‘𝑎) = 𝑔)
5749, 53, 56syl2anc 693 . . . . . . 7 ((𝑂𝑉 ∧ (𝑔 ∈ ({0, 1} ↑𝑚 𝑂) ∧ (𝑔 “ {1}) ∈ Fin)) → ∃𝑎 ∈ (𝒫 𝑂 ∩ Fin)((𝟭‘𝑂)‘𝑎) = 𝑔)
5857ex 450 . . . . . 6 (𝑂𝑉 → ((𝑔 ∈ ({0, 1} ↑𝑚 𝑂) ∧ (𝑔 “ {1}) ∈ Fin) → ∃𝑎 ∈ (𝒫 𝑂 ∩ Fin)((𝟭‘𝑂)‘𝑎) = 𝑔))
5940, 58impbid 202 . . . . 5 (𝑂𝑉 → (∃𝑎 ∈ (𝒫 𝑂 ∩ Fin)((𝟭‘𝑂)‘𝑎) = 𝑔 ↔ (𝑔 ∈ ({0, 1} ↑𝑚 𝑂) ∧ (𝑔 “ {1}) ∈ Fin)))
601, 8syl 17 . . . . . 6 (𝑂𝑉 → (𝟭‘𝑂) Fn 𝒫 𝑂)
61 fvelimab 6253 . . . . . 6 (((𝟭‘𝑂) Fn 𝒫 𝑂 ∧ (𝒫 𝑂 ∩ Fin) ⊆ 𝒫 𝑂) → (𝑔 ∈ ((𝟭‘𝑂) “ (𝒫 𝑂 ∩ Fin)) ↔ ∃𝑎 ∈ (𝒫 𝑂 ∩ Fin)((𝟭‘𝑂)‘𝑎) = 𝑔))
6260, 4, 61sylancl 694 . . . . 5 (𝑂𝑉 → (𝑔 ∈ ((𝟭‘𝑂) “ (𝒫 𝑂 ∩ Fin)) ↔ ∃𝑎 ∈ (𝒫 𝑂 ∩ Fin)((𝟭‘𝑂)‘𝑎) = 𝑔))
63 cnveq 5296 . . . . . . . . 9 (𝑓 = 𝑔𝑓 = 𝑔)
6463imaeq1d 5465 . . . . . . . 8 (𝑓 = 𝑔 → (𝑓 “ {1}) = (𝑔 “ {1}))
6564eleq1d 2686 . . . . . . 7 (𝑓 = 𝑔 → ((𝑓 “ {1}) ∈ Fin ↔ (𝑔 “ {1}) ∈ Fin))
6665elrab 3363 . . . . . 6 (𝑔 ∈ {𝑓 ∈ ({0, 1} ↑𝑚 𝑂) ∣ (𝑓 “ {1}) ∈ Fin} ↔ (𝑔 ∈ ({0, 1} ↑𝑚 𝑂) ∧ (𝑔 “ {1}) ∈ Fin))
6766a1i 11 . . . . 5 (𝑂𝑉 → (𝑔 ∈ {𝑓 ∈ ({0, 1} ↑𝑚 𝑂) ∣ (𝑓 “ {1}) ∈ Fin} ↔ (𝑔 ∈ ({0, 1} ↑𝑚 𝑂) ∧ (𝑔 “ {1}) ∈ Fin)))
6859, 62, 673bitr4d 300 . . . 4 (𝑂𝑉 → (𝑔 ∈ ((𝟭‘𝑂) “ (𝒫 𝑂 ∩ Fin)) ↔ 𝑔 ∈ {𝑓 ∈ ({0, 1} ↑𝑚 𝑂) ∣ (𝑓 “ {1}) ∈ Fin}))
6968eqrdv 2620 . . 3 (𝑂𝑉 → ((𝟭‘𝑂) “ (𝒫 𝑂 ∩ Fin)) = {𝑓 ∈ ({0, 1} ↑𝑚 𝑂) ∣ (𝑓 “ {1}) ∈ Fin})
7012, 13, 69f1oeq123d 6133 . 2 (𝑂𝑉 → (((𝟭‘𝑂) ↾ (𝒫 𝑂 ∩ Fin)):(𝒫 𝑂 ∩ Fin)–1-1-onto→((𝟭‘𝑂) “ (𝒫 𝑂 ∩ Fin)) ↔ ((𝟭‘𝑂) ↾ Fin):(𝒫 𝑂 ∩ Fin)–1-1-onto→{𝑓 ∈ ({0, 1} ↑𝑚 𝑂) ∣ (𝑓 “ {1}) ∈ Fin}))
716, 70mpbid 222 1 (𝑂𝑉 → ((𝟭‘𝑂) ↾ Fin):(𝒫 𝑂 ∩ Fin)–1-1-onto→{𝑓 ∈ ({0, 1} ↑𝑚 𝑂) ∣ (𝑓 “ {1}) ∈ Fin})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wrex 2913  {crab 2916  Vcvv 3200  cin 3573  wss 3574  𝒫 cpw 4158  {csn 4177  {cpr 4179  ccnv 5113  dom cdm 5114  cres 5116  cima 5117   Fn wfn 5883  wf 5884  1-1wf1 5885  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  𝑚 cmap 7857  Fincfn 7955  0cc0 9936  1c1 9937  𝟭cind 30072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-i2m1 10004  ax-1ne0 10005  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-ind 30073
This theorem is referenced by:  eulerpartgbij  30434
  Copyright terms: Public domain W3C validator