MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infxpenc2lem3 Structured version   Visualization version   GIF version

Theorem infxpenc2lem3 8844
Description: Lemma for infxpenc2 8845. (Contributed by Mario Carneiro, 30-May-2015.) (Revised by AV, 7-Jul-2019.)
Hypotheses
Ref Expression
infxpenc2.1 (𝜑𝐴 ∈ On)
infxpenc2.2 (𝜑 → ∀𝑏𝐴 (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1𝑜)(𝑛𝑏):𝑏1-1-onto→(ω ↑𝑜 𝑤)))
infxpenc2.3 𝑊 = ((𝑥 ∈ (On ∖ 1𝑜) ↦ (ω ↑𝑜 𝑥))‘ran (𝑛𝑏))
infxpenc2.4 (𝜑𝐹:(ω ↑𝑜 2𝑜)–1-1-onto→ω)
infxpenc2.5 (𝜑 → (𝐹‘∅) = ∅)
Assertion
Ref Expression
infxpenc2lem3 (𝜑 → ∃𝑔𝑏𝐴 (ω ⊆ 𝑏 → (𝑔𝑏):(𝑏 × 𝑏)–1-1-onto𝑏))
Distinct variable groups:   𝑔,𝑏,𝑛,𝑤,𝑥,𝐴   𝜑,𝑏,𝑤,𝑥   𝑔,𝑊,𝑤,𝑥   𝑔,𝐹,𝑥
Allowed substitution hints:   𝜑(𝑔,𝑛)   𝐹(𝑤,𝑛,𝑏)   𝑊(𝑛,𝑏)

Proof of Theorem infxpenc2lem3
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 infxpenc2.1 . 2 (𝜑𝐴 ∈ On)
2 infxpenc2.2 . 2 (𝜑 → ∀𝑏𝐴 (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1𝑜)(𝑛𝑏):𝑏1-1-onto→(ω ↑𝑜 𝑤)))
3 infxpenc2.3 . 2 𝑊 = ((𝑥 ∈ (On ∖ 1𝑜) ↦ (ω ↑𝑜 𝑥))‘ran (𝑛𝑏))
4 infxpenc2.4 . 2 (𝜑𝐹:(ω ↑𝑜 2𝑜)–1-1-onto→ω)
5 infxpenc2.5 . 2 (𝜑 → (𝐹‘∅) = ∅)
6 eqid 2622 . 2 (𝑦 ∈ {𝑥 ∈ ((ω ↑𝑜 2𝑜) ↑𝑚 𝑊) ∣ 𝑥 finSupp ∅} ↦ (𝐹 ∘ (𝑦( I ↾ 𝑊)))) = (𝑦 ∈ {𝑥 ∈ ((ω ↑𝑜 2𝑜) ↑𝑚 𝑊) ∣ 𝑥 finSupp ∅} ↦ (𝐹 ∘ (𝑦( I ↾ 𝑊))))
7 eqid 2622 . 2 (((ω CNF 𝑊) ∘ (𝑦 ∈ {𝑥 ∈ ((ω ↑𝑜 2𝑜) ↑𝑚 𝑊) ∣ 𝑥 finSupp ∅} ↦ (𝐹 ∘ (𝑦( I ↾ 𝑊))))) ∘ ((ω ↑𝑜 2𝑜) CNF 𝑊)) = (((ω CNF 𝑊) ∘ (𝑦 ∈ {𝑥 ∈ ((ω ↑𝑜 2𝑜) ↑𝑚 𝑊) ∣ 𝑥 finSupp ∅} ↦ (𝐹 ∘ (𝑦( I ↾ 𝑊))))) ∘ ((ω ↑𝑜 2𝑜) CNF 𝑊))
8 eqid 2622 . 2 (𝑦 ∈ {𝑥 ∈ (ω ↑𝑚 (𝑊 ·𝑜 2𝑜)) ∣ 𝑥 finSupp ∅} ↦ (( I ↾ ω) ∘ (𝑦((𝑧 ∈ 2𝑜, 𝑤𝑊 ↦ ((2𝑜 ·𝑜 𝑤) +𝑜 𝑧)) ∘ (𝑧 ∈ 2𝑜, 𝑤𝑊 ↦ ((𝑊 ·𝑜 𝑧) +𝑜 𝑤)))))) = (𝑦 ∈ {𝑥 ∈ (ω ↑𝑚 (𝑊 ·𝑜 2𝑜)) ∣ 𝑥 finSupp ∅} ↦ (( I ↾ ω) ∘ (𝑦((𝑧 ∈ 2𝑜, 𝑤𝑊 ↦ ((2𝑜 ·𝑜 𝑤) +𝑜 𝑧)) ∘ (𝑧 ∈ 2𝑜, 𝑤𝑊 ↦ ((𝑊 ·𝑜 𝑧) +𝑜 𝑤))))))
9 eqid 2622 . 2 (𝑧 ∈ 2𝑜, 𝑤𝑊 ↦ ((𝑊 ·𝑜 𝑧) +𝑜 𝑤)) = (𝑧 ∈ 2𝑜, 𝑤𝑊 ↦ ((𝑊 ·𝑜 𝑧) +𝑜 𝑤))
10 eqid 2622 . 2 (𝑧 ∈ 2𝑜, 𝑤𝑊 ↦ ((2𝑜 ·𝑜 𝑤) +𝑜 𝑧)) = (𝑧 ∈ 2𝑜, 𝑤𝑊 ↦ ((2𝑜 ·𝑜 𝑤) +𝑜 𝑧))
11 eqid 2622 . 2 (((ω CNF (2𝑜 ·𝑜 𝑊)) ∘ (𝑦 ∈ {𝑥 ∈ (ω ↑𝑚 (𝑊 ·𝑜 2𝑜)) ∣ 𝑥 finSupp ∅} ↦ (( I ↾ ω) ∘ (𝑦((𝑧 ∈ 2𝑜, 𝑤𝑊 ↦ ((2𝑜 ·𝑜 𝑤) +𝑜 𝑧)) ∘ (𝑧 ∈ 2𝑜, 𝑤𝑊 ↦ ((𝑊 ·𝑜 𝑧) +𝑜 𝑤))))))) ∘ (ω CNF (𝑊 ·𝑜 2𝑜))) = (((ω CNF (2𝑜 ·𝑜 𝑊)) ∘ (𝑦 ∈ {𝑥 ∈ (ω ↑𝑚 (𝑊 ·𝑜 2𝑜)) ∣ 𝑥 finSupp ∅} ↦ (( I ↾ ω) ∘ (𝑦((𝑧 ∈ 2𝑜, 𝑤𝑊 ↦ ((2𝑜 ·𝑜 𝑤) +𝑜 𝑧)) ∘ (𝑧 ∈ 2𝑜, 𝑤𝑊 ↦ ((𝑊 ·𝑜 𝑧) +𝑜 𝑤))))))) ∘ (ω CNF (𝑊 ·𝑜 2𝑜)))
12 eqid 2622 . 2 (𝑥 ∈ (ω ↑𝑜 𝑊), 𝑦 ∈ (ω ↑𝑜 𝑊) ↦ (((ω ↑𝑜 𝑊) ·𝑜 𝑥) +𝑜 𝑦)) = (𝑥 ∈ (ω ↑𝑜 𝑊), 𝑦 ∈ (ω ↑𝑜 𝑊) ↦ (((ω ↑𝑜 𝑊) ·𝑜 𝑥) +𝑜 𝑦))
13 eqid 2622 . 2 (𝑥𝑏, 𝑦𝑏 ↦ ⟨((𝑛𝑏)‘𝑥), ((𝑛𝑏)‘𝑦)⟩) = (𝑥𝑏, 𝑦𝑏 ↦ ⟨((𝑛𝑏)‘𝑥), ((𝑛𝑏)‘𝑦)⟩)
14 eqid 2622 . 2 ((𝑛𝑏) ∘ ((((((ω CNF 𝑊) ∘ (𝑦 ∈ {𝑥 ∈ ((ω ↑𝑜 2𝑜) ↑𝑚 𝑊) ∣ 𝑥 finSupp ∅} ↦ (𝐹 ∘ (𝑦( I ↾ 𝑊))))) ∘ ((ω ↑𝑜 2𝑜) CNF 𝑊)) ∘ (((ω CNF (2𝑜 ·𝑜 𝑊)) ∘ (𝑦 ∈ {𝑥 ∈ (ω ↑𝑚 (𝑊 ·𝑜 2𝑜)) ∣ 𝑥 finSupp ∅} ↦ (( I ↾ ω) ∘ (𝑦((𝑧 ∈ 2𝑜, 𝑤𝑊 ↦ ((2𝑜 ·𝑜 𝑤) +𝑜 𝑧)) ∘ (𝑧 ∈ 2𝑜, 𝑤𝑊 ↦ ((𝑊 ·𝑜 𝑧) +𝑜 𝑤))))))) ∘ (ω CNF (𝑊 ·𝑜 2𝑜)))) ∘ (𝑥 ∈ (ω ↑𝑜 𝑊), 𝑦 ∈ (ω ↑𝑜 𝑊) ↦ (((ω ↑𝑜 𝑊) ·𝑜 𝑥) +𝑜 𝑦))) ∘ (𝑥𝑏, 𝑦𝑏 ↦ ⟨((𝑛𝑏)‘𝑥), ((𝑛𝑏)‘𝑦)⟩))) = ((𝑛𝑏) ∘ ((((((ω CNF 𝑊) ∘ (𝑦 ∈ {𝑥 ∈ ((ω ↑𝑜 2𝑜) ↑𝑚 𝑊) ∣ 𝑥 finSupp ∅} ↦ (𝐹 ∘ (𝑦( I ↾ 𝑊))))) ∘ ((ω ↑𝑜 2𝑜) CNF 𝑊)) ∘ (((ω CNF (2𝑜 ·𝑜 𝑊)) ∘ (𝑦 ∈ {𝑥 ∈ (ω ↑𝑚 (𝑊 ·𝑜 2𝑜)) ∣ 𝑥 finSupp ∅} ↦ (( I ↾ ω) ∘ (𝑦((𝑧 ∈ 2𝑜, 𝑤𝑊 ↦ ((2𝑜 ·𝑜 𝑤) +𝑜 𝑧)) ∘ (𝑧 ∈ 2𝑜, 𝑤𝑊 ↦ ((𝑊 ·𝑜 𝑧) +𝑜 𝑤))))))) ∘ (ω CNF (𝑊 ·𝑜 2𝑜)))) ∘ (𝑥 ∈ (ω ↑𝑜 𝑊), 𝑦 ∈ (ω ↑𝑜 𝑊) ↦ (((ω ↑𝑜 𝑊) ·𝑜 𝑥) +𝑜 𝑦))) ∘ (𝑥𝑏, 𝑦𝑏 ↦ ⟨((𝑛𝑏)‘𝑥), ((𝑛𝑏)‘𝑦)⟩)))
151, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14infxpenc2lem2 8843 1 (𝜑 → ∃𝑔𝑏𝐴 (ω ⊆ 𝑏 → (𝑔𝑏):(𝑏 × 𝑏)–1-1-onto𝑏))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wex 1704  wcel 1990  wral 2912  wrex 2913  {crab 2916  cdif 3571  wss 3574  c0 3915  cop 4183   class class class wbr 4653  cmpt 4729   I cid 5023   × cxp 5112  ccnv 5113  ran crn 5115  cres 5116  ccom 5118  Oncon0 5723  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  cmpt2 6652  ωcom 7065  1𝑜c1o 7553  2𝑜c2o 7554   +𝑜 coa 7557   ·𝑜 comu 7558  𝑜 coe 7559  𝑚 cmap 7857   finSupp cfsupp 8275   CNF ccnf 8558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-seqom 7543  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-oexp 7566  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-cnf 8559
This theorem is referenced by:  infxpenc2  8845
  Copyright terms: Public domain W3C validator