Proof of Theorem infxpenc2lem2
| Step | Hyp | Ref
| Expression |
| 1 | | infxpenc2.1 |
. . 3
⊢ (𝜑 → 𝐴 ∈ On) |
| 2 | | mptexg 6484 |
. . 3
⊢ (𝐴 ∈ On → (𝑏 ∈ 𝐴 ↦ 𝐺) ∈ V) |
| 3 | 1, 2 | syl 17 |
. 2
⊢ (𝜑 → (𝑏 ∈ 𝐴 ↦ 𝐺) ∈ V) |
| 4 | 1 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏)) → 𝐴 ∈ On) |
| 5 | | simprl 794 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏)) → 𝑏 ∈ 𝐴) |
| 6 | | onelon 5748 |
. . . . . . 7
⊢ ((𝐴 ∈ On ∧ 𝑏 ∈ 𝐴) → 𝑏 ∈ On) |
| 7 | 4, 5, 6 | syl2anc 693 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏)) → 𝑏 ∈ On) |
| 8 | | simprr 796 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏)) → ω ⊆ 𝑏) |
| 9 | | infxpenc2.2 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑏 ∈ 𝐴 (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖
1𝑜)(𝑛‘𝑏):𝑏–1-1-onto→(ω ↑𝑜 𝑤))) |
| 10 | | infxpenc2.3 |
. . . . . . . 8
⊢ 𝑊 = (◡(𝑥 ∈ (On ∖ 1𝑜)
↦ (ω ↑𝑜 𝑥))‘ran (𝑛‘𝑏)) |
| 11 | 1, 9, 10 | infxpenc2lem1 8842 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏)) → (𝑊 ∈ (On ∖ 1𝑜)
∧ (𝑛‘𝑏):𝑏–1-1-onto→(ω ↑𝑜 𝑊))) |
| 12 | 11 | simpld 475 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏)) → 𝑊 ∈ (On ∖
1𝑜)) |
| 13 | | infxpenc2.4 |
. . . . . . 7
⊢ (𝜑 → 𝐹:(ω ↑𝑜
2𝑜)–1-1-onto→ω) |
| 14 | 13 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏)) → 𝐹:(ω ↑𝑜
2𝑜)–1-1-onto→ω) |
| 15 | | infxpenc2.5 |
. . . . . . 7
⊢ (𝜑 → (𝐹‘∅) = ∅) |
| 16 | 15 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏)) → (𝐹‘∅) = ∅) |
| 17 | 11 | simprd 479 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏)) → (𝑛‘𝑏):𝑏–1-1-onto→(ω ↑𝑜 𝑊)) |
| 18 | | infxpenc2.k |
. . . . . 6
⊢ 𝐾 = (𝑦 ∈ {𝑥 ∈ ((ω ↑𝑜
2𝑜) ↑𝑚 𝑊) ∣ 𝑥 finSupp ∅} ↦ (𝐹 ∘ (𝑦 ∘ ◡( I ↾ 𝑊)))) |
| 19 | | infxpenc2.h |
. . . . . 6
⊢ 𝐻 = (((ω CNF 𝑊) ∘ 𝐾) ∘ ◡((ω ↑𝑜
2𝑜) CNF 𝑊)) |
| 20 | | infxpenc2.l |
. . . . . 6
⊢ 𝐿 = (𝑦 ∈ {𝑥 ∈ (ω ↑𝑚
(𝑊
·𝑜 2𝑜)) ∣ 𝑥 finSupp ∅} ↦ (( I ↾
ω) ∘ (𝑦 ∘
◡(𝑌 ∘ ◡𝑋)))) |
| 21 | | infxpenc2.x |
. . . . . 6
⊢ 𝑋 = (𝑧 ∈ 2𝑜, 𝑤 ∈ 𝑊 ↦ ((𝑊 ·𝑜 𝑧) +𝑜 𝑤)) |
| 22 | | infxpenc2.y |
. . . . . 6
⊢ 𝑌 = (𝑧 ∈ 2𝑜, 𝑤 ∈ 𝑊 ↦ ((2𝑜
·𝑜 𝑤) +𝑜 𝑧)) |
| 23 | | infxpenc2.j |
. . . . . 6
⊢ 𝐽 = (((ω CNF
(2𝑜 ·𝑜 𝑊)) ∘ 𝐿) ∘ ◡(ω CNF (𝑊 ·𝑜
2𝑜))) |
| 24 | | infxpenc2.z |
. . . . . 6
⊢ 𝑍 = (𝑥 ∈ (ω ↑𝑜
𝑊), 𝑦 ∈ (ω ↑𝑜
𝑊) ↦ (((ω
↑𝑜 𝑊) ·𝑜 𝑥) +𝑜 𝑦)) |
| 25 | | infxpenc2.t |
. . . . . 6
⊢ 𝑇 = (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ 〈((𝑛‘𝑏)‘𝑥), ((𝑛‘𝑏)‘𝑦)〉) |
| 26 | | infxpenc2.g |
. . . . . 6
⊢ 𝐺 = (◡(𝑛‘𝑏) ∘ (((𝐻 ∘ 𝐽) ∘ 𝑍) ∘ 𝑇)) |
| 27 | 7, 8, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26 | infxpenc 8841 |
. . . . 5
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏)) → 𝐺:(𝑏 × 𝑏)–1-1-onto→𝑏) |
| 28 | | f1of 6137 |
. . . . . . . . 9
⊢ (𝐺:(𝑏 × 𝑏)–1-1-onto→𝑏 → 𝐺:(𝑏 × 𝑏)⟶𝑏) |
| 29 | 27, 28 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏)) → 𝐺:(𝑏 × 𝑏)⟶𝑏) |
| 30 | | vex 3203 |
. . . . . . . . 9
⊢ 𝑏 ∈ V |
| 31 | 30, 30 | xpex 6962 |
. . . . . . . 8
⊢ (𝑏 × 𝑏) ∈ V |
| 32 | | fex 6490 |
. . . . . . . 8
⊢ ((𝐺:(𝑏 × 𝑏)⟶𝑏 ∧ (𝑏 × 𝑏) ∈ V) → 𝐺 ∈ V) |
| 33 | 29, 31, 32 | sylancl 694 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏)) → 𝐺 ∈ V) |
| 34 | | eqid 2622 |
. . . . . . . 8
⊢ (𝑏 ∈ 𝐴 ↦ 𝐺) = (𝑏 ∈ 𝐴 ↦ 𝐺) |
| 35 | 34 | fvmpt2 6291 |
. . . . . . 7
⊢ ((𝑏 ∈ 𝐴 ∧ 𝐺 ∈ V) → ((𝑏 ∈ 𝐴 ↦ 𝐺)‘𝑏) = 𝐺) |
| 36 | 5, 33, 35 | syl2anc 693 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏)) → ((𝑏 ∈ 𝐴 ↦ 𝐺)‘𝑏) = 𝐺) |
| 37 | | f1oeq1 6127 |
. . . . . 6
⊢ (((𝑏 ∈ 𝐴 ↦ 𝐺)‘𝑏) = 𝐺 → (((𝑏 ∈ 𝐴 ↦ 𝐺)‘𝑏):(𝑏 × 𝑏)–1-1-onto→𝑏 ↔ 𝐺:(𝑏 × 𝑏)–1-1-onto→𝑏)) |
| 38 | 36, 37 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏)) → (((𝑏 ∈ 𝐴 ↦ 𝐺)‘𝑏):(𝑏 × 𝑏)–1-1-onto→𝑏 ↔ 𝐺:(𝑏 × 𝑏)–1-1-onto→𝑏)) |
| 39 | 27, 38 | mpbird 247 |
. . . 4
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏)) → ((𝑏 ∈ 𝐴 ↦ 𝐺)‘𝑏):(𝑏 × 𝑏)–1-1-onto→𝑏) |
| 40 | 39 | expr 643 |
. . 3
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐴) → (ω ⊆ 𝑏 → ((𝑏 ∈ 𝐴 ↦ 𝐺)‘𝑏):(𝑏 × 𝑏)–1-1-onto→𝑏)) |
| 41 | 40 | ralrimiva 2966 |
. 2
⊢ (𝜑 → ∀𝑏 ∈ 𝐴 (ω ⊆ 𝑏 → ((𝑏 ∈ 𝐴 ↦ 𝐺)‘𝑏):(𝑏 × 𝑏)–1-1-onto→𝑏)) |
| 42 | | nfmpt1 4747 |
. . . . 5
⊢
Ⅎ𝑏(𝑏 ∈ 𝐴 ↦ 𝐺) |
| 43 | 42 | nfeq2 2780 |
. . . 4
⊢
Ⅎ𝑏 𝑔 = (𝑏 ∈ 𝐴 ↦ 𝐺) |
| 44 | | fveq1 6190 |
. . . . . 6
⊢ (𝑔 = (𝑏 ∈ 𝐴 ↦ 𝐺) → (𝑔‘𝑏) = ((𝑏 ∈ 𝐴 ↦ 𝐺)‘𝑏)) |
| 45 | | f1oeq1 6127 |
. . . . . 6
⊢ ((𝑔‘𝑏) = ((𝑏 ∈ 𝐴 ↦ 𝐺)‘𝑏) → ((𝑔‘𝑏):(𝑏 × 𝑏)–1-1-onto→𝑏 ↔ ((𝑏 ∈ 𝐴 ↦ 𝐺)‘𝑏):(𝑏 × 𝑏)–1-1-onto→𝑏)) |
| 46 | 44, 45 | syl 17 |
. . . . 5
⊢ (𝑔 = (𝑏 ∈ 𝐴 ↦ 𝐺) → ((𝑔‘𝑏):(𝑏 × 𝑏)–1-1-onto→𝑏 ↔ ((𝑏 ∈ 𝐴 ↦ 𝐺)‘𝑏):(𝑏 × 𝑏)–1-1-onto→𝑏)) |
| 47 | 46 | imbi2d 330 |
. . . 4
⊢ (𝑔 = (𝑏 ∈ 𝐴 ↦ 𝐺) → ((ω ⊆ 𝑏 → (𝑔‘𝑏):(𝑏 × 𝑏)–1-1-onto→𝑏) ↔ (ω ⊆ 𝑏 → ((𝑏 ∈ 𝐴 ↦ 𝐺)‘𝑏):(𝑏 × 𝑏)–1-1-onto→𝑏))) |
| 48 | 43, 47 | ralbid 2983 |
. . 3
⊢ (𝑔 = (𝑏 ∈ 𝐴 ↦ 𝐺) → (∀𝑏 ∈ 𝐴 (ω ⊆ 𝑏 → (𝑔‘𝑏):(𝑏 × 𝑏)–1-1-onto→𝑏) ↔ ∀𝑏 ∈ 𝐴 (ω ⊆ 𝑏 → ((𝑏 ∈ 𝐴 ↦ 𝐺)‘𝑏):(𝑏 × 𝑏)–1-1-onto→𝑏))) |
| 49 | 48 | spcegv 3294 |
. 2
⊢ ((𝑏 ∈ 𝐴 ↦ 𝐺) ∈ V → (∀𝑏 ∈ 𝐴 (ω ⊆ 𝑏 → ((𝑏 ∈ 𝐴 ↦ 𝐺)‘𝑏):(𝑏 × 𝑏)–1-1-onto→𝑏) → ∃𝑔∀𝑏 ∈ 𝐴 (ω ⊆ 𝑏 → (𝑔‘𝑏):(𝑏 × 𝑏)–1-1-onto→𝑏))) |
| 50 | 3, 41, 49 | sylc 65 |
1
⊢ (𝜑 → ∃𝑔∀𝑏 ∈ 𝐴 (ω ⊆ 𝑏 → (𝑔‘𝑏):(𝑏 × 𝑏)–1-1-onto→𝑏)) |