![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > infxrunb3rnmpt | Structured version Visualization version GIF version |
Description: The infimum of an unbounded-below set of extended reals is minus infinity. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
infxrunb3rnmpt.1 | ⊢ Ⅎ𝑥𝜑 |
infxrunb3rnmpt.2 | ⊢ Ⅎ𝑦𝜑 |
infxrunb3rnmpt.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) |
Ref | Expression |
---|---|
infxrunb3rnmpt | ⊢ (𝜑 → (∀𝑦 ∈ ℝ ∃𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ↔ inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) = -∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infxrunb3rnmpt.2 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
2 | infxrunb3rnmpt.1 | . . . . 5 ⊢ Ⅎ𝑥𝜑 | |
3 | nfmpt1 4747 | . . . . . . 7 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) | |
4 | 3 | nfrn 5368 | . . . . . 6 ⊢ Ⅎ𝑥ran (𝑥 ∈ 𝐴 ↦ 𝐵) |
5 | nfv 1843 | . . . . . 6 ⊢ Ⅎ𝑥 𝑧 ≤ 𝑦 | |
6 | 4, 5 | nfrex 3007 | . . . . 5 ⊢ Ⅎ𝑥∃𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦 |
7 | simpr 477 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
8 | infxrunb3rnmpt.3 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) | |
9 | eqid 2622 | . . . . . . . . . 10 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
10 | 9 | elrnmpt1 5374 | . . . . . . . . 9 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ℝ*) → 𝐵 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
11 | 7, 8, 10 | syl2anc 693 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
12 | 11 | 3adant3 1081 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝐵 ≤ 𝑦) → 𝐵 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
13 | simp3 1063 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝐵 ≤ 𝑦) → 𝐵 ≤ 𝑦) | |
14 | breq1 4656 | . . . . . . . 8 ⊢ (𝑧 = 𝐵 → (𝑧 ≤ 𝑦 ↔ 𝐵 ≤ 𝑦)) | |
15 | 14 | rspcev 3309 | . . . . . . 7 ⊢ ((𝐵 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ 𝐵 ≤ 𝑦) → ∃𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦) |
16 | 12, 13, 15 | syl2anc 693 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝐵 ≤ 𝑦) → ∃𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦) |
17 | 16 | 3exp 1264 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝐵 ≤ 𝑦 → ∃𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦))) |
18 | 2, 6, 17 | rexlimd 3026 | . . . 4 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 → ∃𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦)) |
19 | nfv 1843 | . . . . . 6 ⊢ Ⅎ𝑧∃𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 | |
20 | vex 3203 | . . . . . . . . 9 ⊢ 𝑧 ∈ V | |
21 | 9 | elrnmpt 5372 | . . . . . . . . 9 ⊢ (𝑧 ∈ V → (𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵)) |
22 | 20, 21 | ax-mp 5 | . . . . . . . 8 ⊢ (𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵) |
23 | 22 | biimpi 206 | . . . . . . 7 ⊢ (𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) → ∃𝑥 ∈ 𝐴 𝑧 = 𝐵) |
24 | 14 | biimpcd 239 | . . . . . . . . . 10 ⊢ (𝑧 ≤ 𝑦 → (𝑧 = 𝐵 → 𝐵 ≤ 𝑦)) |
25 | 24 | a1d 25 | . . . . . . . . 9 ⊢ (𝑧 ≤ 𝑦 → (𝑥 ∈ 𝐴 → (𝑧 = 𝐵 → 𝐵 ≤ 𝑦))) |
26 | 5, 25 | reximdai 3012 | . . . . . . . 8 ⊢ (𝑧 ≤ 𝑦 → (∃𝑥 ∈ 𝐴 𝑧 = 𝐵 → ∃𝑥 ∈ 𝐴 𝐵 ≤ 𝑦)) |
27 | 26 | com12 32 | . . . . . . 7 ⊢ (∃𝑥 ∈ 𝐴 𝑧 = 𝐵 → (𝑧 ≤ 𝑦 → ∃𝑥 ∈ 𝐴 𝐵 ≤ 𝑦)) |
28 | 23, 27 | syl 17 | . . . . . 6 ⊢ (𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) → (𝑧 ≤ 𝑦 → ∃𝑥 ∈ 𝐴 𝐵 ≤ 𝑦)) |
29 | 19, 28 | rexlimi 3024 | . . . . 5 ⊢ (∃𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦 → ∃𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) |
30 | 29 | a1i 11 | . . . 4 ⊢ (𝜑 → (∃𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦 → ∃𝑥 ∈ 𝐴 𝐵 ≤ 𝑦)) |
31 | 18, 30 | impbid 202 | . . 3 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ↔ ∃𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦)) |
32 | 1, 31 | ralbid 2983 | . 2 ⊢ (𝜑 → (∀𝑦 ∈ ℝ ∃𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ↔ ∀𝑦 ∈ ℝ ∃𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦)) |
33 | 2, 9, 8 | rnmptssd 39385 | . . 3 ⊢ (𝜑 → ran (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ ℝ*) |
34 | infxrunb3 39651 | . . 3 ⊢ (ran (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ ℝ* → (∀𝑦 ∈ ℝ ∃𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦 ↔ inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) = -∞)) | |
35 | 33, 34 | syl 17 | . 2 ⊢ (𝜑 → (∀𝑦 ∈ ℝ ∃𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦 ↔ inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) = -∞)) |
36 | 32, 35 | bitrd 268 | 1 ⊢ (𝜑 → (∀𝑦 ∈ ℝ ∃𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ↔ inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) = -∞)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 ∧ w3a 1037 = wceq 1483 Ⅎwnf 1708 ∈ wcel 1990 ∀wral 2912 ∃wrex 2913 Vcvv 3200 ⊆ wss 3574 class class class wbr 4653 ↦ cmpt 4729 ran crn 5115 infcinf 8347 ℝcr 9935 -∞cmnf 10072 ℝ*cxr 10073 < clt 10074 ≤ cle 10075 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-sup 8348 df-inf 8349 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 |
This theorem is referenced by: limsupmnflem 39952 |
Copyright terms: Public domain | W3C validator |