Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  infxrunb3rnmpt Structured version   Visualization version   Unicode version

Theorem infxrunb3rnmpt 39655
Description: The infimum of an unbounded-below set of extended reals is minus infinity. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
infxrunb3rnmpt.1  |-  F/ x ph
infxrunb3rnmpt.2  |-  F/ y
ph
infxrunb3rnmpt.3  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR* )
Assertion
Ref Expression
infxrunb3rnmpt  |-  ( ph  ->  ( A. y  e.  RR  E. x  e.  A  B  <_  y  <-> inf ( ran  ( x  e.  A  |->  B ) , 
RR* ,  <  )  = -oo ) )
Distinct variable groups:    x, A, y    y, B
Allowed substitution hints:    ph( x, y)    B( x)

Proof of Theorem infxrunb3rnmpt
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 infxrunb3rnmpt.2 . . 3  |-  F/ y
ph
2 infxrunb3rnmpt.1 . . . . 5  |-  F/ x ph
3 nfmpt1 4747 . . . . . . 7  |-  F/_ x
( x  e.  A  |->  B )
43nfrn 5368 . . . . . 6  |-  F/_ x ran  ( x  e.  A  |->  B )
5 nfv 1843 . . . . . 6  |-  F/ x  z  <_  y
64, 5nfrex 3007 . . . . 5  |-  F/ x E. z  e.  ran  ( x  e.  A  |->  B ) z  <_ 
y
7 simpr 477 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  A )
8 infxrunb3rnmpt.3 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR* )
9 eqid 2622 . . . . . . . . . 10  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
109elrnmpt1 5374 . . . . . . . . 9  |-  ( ( x  e.  A  /\  B  e.  RR* )  ->  B  e.  ran  ( x  e.  A  |->  B ) )
117, 8, 10syl2anc 693 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  ran  ( x  e.  A  |->  B ) )
12113adant3 1081 . . . . . . 7  |-  ( (
ph  /\  x  e.  A  /\  B  <_  y
)  ->  B  e.  ran  ( x  e.  A  |->  B ) )
13 simp3 1063 . . . . . . 7  |-  ( (
ph  /\  x  e.  A  /\  B  <_  y
)  ->  B  <_  y )
14 breq1 4656 . . . . . . . 8  |-  ( z  =  B  ->  (
z  <_  y  <->  B  <_  y ) )
1514rspcev 3309 . . . . . . 7  |-  ( ( B  e.  ran  (
x  e.  A  |->  B )  /\  B  <_ 
y )  ->  E. z  e.  ran  ( x  e.  A  |->  B ) z  <_  y )
1612, 13, 15syl2anc 693 . . . . . 6  |-  ( (
ph  /\  x  e.  A  /\  B  <_  y
)  ->  E. z  e.  ran  ( x  e.  A  |->  B ) z  <_  y )
17163exp 1264 . . . . 5  |-  ( ph  ->  ( x  e.  A  ->  ( B  <_  y  ->  E. z  e.  ran  ( x  e.  A  |->  B ) z  <_ 
y ) ) )
182, 6, 17rexlimd 3026 . . . 4  |-  ( ph  ->  ( E. x  e.  A  B  <_  y  ->  E. z  e.  ran  ( x  e.  A  |->  B ) z  <_ 
y ) )
19 nfv 1843 . . . . . 6  |-  F/ z E. x  e.  A  B  <_  y
20 vex 3203 . . . . . . . . 9  |-  z  e. 
_V
219elrnmpt 5372 . . . . . . . . 9  |-  ( z  e.  _V  ->  (
z  e.  ran  (
x  e.  A  |->  B )  <->  E. x  e.  A  z  =  B )
)
2220, 21ax-mp 5 . . . . . . . 8  |-  ( z  e.  ran  ( x  e.  A  |->  B )  <->  E. x  e.  A  z  =  B )
2322biimpi 206 . . . . . . 7  |-  ( z  e.  ran  ( x  e.  A  |->  B )  ->  E. x  e.  A  z  =  B )
2414biimpcd 239 . . . . . . . . . 10  |-  ( z  <_  y  ->  (
z  =  B  ->  B  <_  y ) )
2524a1d 25 . . . . . . . . 9  |-  ( z  <_  y  ->  (
x  e.  A  -> 
( z  =  B  ->  B  <_  y
) ) )
265, 25reximdai 3012 . . . . . . . 8  |-  ( z  <_  y  ->  ( E. x  e.  A  z  =  B  ->  E. x  e.  A  B  <_  y ) )
2726com12 32 . . . . . . 7  |-  ( E. x  e.  A  z  =  B  ->  (
z  <_  y  ->  E. x  e.  A  B  <_  y ) )
2823, 27syl 17 . . . . . 6  |-  ( z  e.  ran  ( x  e.  A  |->  B )  ->  ( z  <_ 
y  ->  E. x  e.  A  B  <_  y ) )
2919, 28rexlimi 3024 . . . . 5  |-  ( E. z  e.  ran  (
x  e.  A  |->  B ) z  <_  y  ->  E. x  e.  A  B  <_  y )
3029a1i 11 . . . 4  |-  ( ph  ->  ( E. z  e. 
ran  ( x  e.  A  |->  B ) z  <_  y  ->  E. x  e.  A  B  <_  y ) )
3118, 30impbid 202 . . 3  |-  ( ph  ->  ( E. x  e.  A  B  <_  y  <->  E. z  e.  ran  (
x  e.  A  |->  B ) z  <_  y
) )
321, 31ralbid 2983 . 2  |-  ( ph  ->  ( A. y  e.  RR  E. x  e.  A  B  <_  y  <->  A. y  e.  RR  E. z  e.  ran  ( x  e.  A  |->  B ) z  <_  y )
)
332, 9, 8rnmptssd 39385 . . 3  |-  ( ph  ->  ran  ( x  e.  A  |->  B )  C_  RR* )
34 infxrunb3 39651 . . 3  |-  ( ran  ( x  e.  A  |->  B )  C_  RR*  ->  ( A. y  e.  RR  E. z  e.  ran  (
x  e.  A  |->  B ) z  <_  y  <-> inf ( ran  ( x  e.  A  |->  B ) , 
RR* ,  <  )  = -oo ) )
3533, 34syl 17 . 2  |-  ( ph  ->  ( A. y  e.  RR  E. z  e. 
ran  ( x  e.  A  |->  B ) z  <_  y  <-> inf ( ran  ( x  e.  A  |->  B ) ,  RR* ,  <  )  = -oo ) )
3632, 35bitrd 268 1  |-  ( ph  ->  ( A. y  e.  RR  E. x  e.  A  B  <_  y  <-> inf ( ran  ( x  e.  A  |->  B ) , 
RR* ,  <  )  = -oo ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   F/wnf 1708    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200    C_ wss 3574   class class class wbr 4653    |-> cmpt 4729   ran crn 5115  infcinf 8347   RRcr 9935   -oocmnf 10072   RR*cxr 10073    < clt 10074    <_ cle 10075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269
This theorem is referenced by:  limsupmnflem  39952
  Copyright terms: Public domain W3C validator