| Step | Hyp | Ref
| Expression |
| 1 | | efgval.r |
. 2
⊢ ∼ = (
~FG ‘𝐼) |
| 2 | | vex 3203 |
. . . . . . . . . . . 12
⊢ 𝑖 ∈ V |
| 3 | | 2on 7568 |
. . . . . . . . . . . . 13
⊢
2𝑜 ∈ On |
| 4 | 3 | elexi 3213 |
. . . . . . . . . . . 12
⊢
2𝑜 ∈ V |
| 5 | 2, 4 | xpex 6962 |
. . . . . . . . . . 11
⊢ (𝑖 × 2𝑜)
∈ V |
| 6 | | wrdexg 13315 |
. . . . . . . . . . 11
⊢ ((𝑖 × 2𝑜)
∈ V → Word (𝑖
× 2𝑜) ∈ V) |
| 7 | | fvi 6255 |
. . . . . . . . . . 11
⊢ (Word
(𝑖 ×
2𝑜) ∈ V → ( I ‘Word (𝑖 × 2𝑜)) = Word
(𝑖 ×
2𝑜)) |
| 8 | 5, 6, 7 | mp2b 10 |
. . . . . . . . . 10
⊢ ( I
‘Word (𝑖 ×
2𝑜)) = Word (𝑖 ×
2𝑜) |
| 9 | | xpeq1 5128 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝐼 → (𝑖 × 2𝑜) = (𝐼 ×
2𝑜)) |
| 10 | | wrdeq 13327 |
. . . . . . . . . . . 12
⊢ ((𝑖 × 2𝑜)
= (𝐼 ×
2𝑜) → Word (𝑖 × 2𝑜) = Word (𝐼 ×
2𝑜)) |
| 11 | 9, 10 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝐼 → Word (𝑖 × 2𝑜) = Word (𝐼 ×
2𝑜)) |
| 12 | 11 | fveq2d 6195 |
. . . . . . . . . 10
⊢ (𝑖 = 𝐼 → ( I ‘Word (𝑖 × 2𝑜)) = ( I
‘Word (𝐼 ×
2𝑜))) |
| 13 | 8, 12 | syl5eqr 2670 |
. . . . . . . . 9
⊢ (𝑖 = 𝐼 → Word (𝑖 × 2𝑜) = ( I
‘Word (𝐼 ×
2𝑜))) |
| 14 | | efgval.w |
. . . . . . . . 9
⊢ 𝑊 = ( I ‘Word (𝐼 ×
2𝑜)) |
| 15 | 13, 14 | syl6eqr 2674 |
. . . . . . . 8
⊢ (𝑖 = 𝐼 → Word (𝑖 × 2𝑜) = 𝑊) |
| 16 | | ereq2 7750 |
. . . . . . . 8
⊢ (Word
(𝑖 ×
2𝑜) = 𝑊
→ (𝑟 Er Word (𝑖 × 2𝑜)
↔ 𝑟 Er 𝑊)) |
| 17 | 15, 16 | syl 17 |
. . . . . . 7
⊢ (𝑖 = 𝐼 → (𝑟 Er Word (𝑖 × 2𝑜) ↔ 𝑟 Er 𝑊)) |
| 18 | | raleq 3138 |
. . . . . . . . 9
⊢ (𝑖 = 𝐼 → (∀𝑦 ∈ 𝑖 ∀𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1𝑜 ∖ 𝑧)〉”〉〉)
↔ ∀𝑦 ∈
𝐼 ∀𝑧 ∈ 2𝑜
𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1𝑜 ∖ 𝑧)〉”〉〉))) |
| 19 | 18 | ralbidv 2986 |
. . . . . . . 8
⊢ (𝑖 = 𝐼 → (∀𝑛 ∈ (0...(#‘𝑥))∀𝑦 ∈ 𝑖 ∀𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1𝑜 ∖ 𝑧)〉”〉〉)
↔ ∀𝑛 ∈
(0...(#‘𝑥))∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1𝑜 ∖ 𝑧)〉”〉〉))) |
| 20 | 15, 19 | raleqbidv 3152 |
. . . . . . 7
⊢ (𝑖 = 𝐼 → (∀𝑥 ∈ Word (𝑖 × 2𝑜)∀𝑛 ∈ (0...(#‘𝑥))∀𝑦 ∈ 𝑖 ∀𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1𝑜 ∖ 𝑧)〉”〉〉)
↔ ∀𝑥 ∈
𝑊 ∀𝑛 ∈ (0...(#‘𝑥))∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1𝑜 ∖ 𝑧)〉”〉〉))) |
| 21 | 17, 20 | anbi12d 747 |
. . . . . 6
⊢ (𝑖 = 𝐼 → ((𝑟 Er Word (𝑖 × 2𝑜) ∧
∀𝑥 ∈ Word
(𝑖 ×
2𝑜)∀𝑛 ∈ (0...(#‘𝑥))∀𝑦 ∈ 𝑖 ∀𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1𝑜 ∖ 𝑧)〉”〉〉))
↔ (𝑟 Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(#‘𝑥))∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1𝑜 ∖ 𝑧)〉”〉〉)))) |
| 22 | 21 | abbidv 2741 |
. . . . 5
⊢ (𝑖 = 𝐼 → {𝑟 ∣ (𝑟 Er Word (𝑖 × 2𝑜) ∧
∀𝑥 ∈ Word
(𝑖 ×
2𝑜)∀𝑛 ∈ (0...(#‘𝑥))∀𝑦 ∈ 𝑖 ∀𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1𝑜 ∖ 𝑧)〉”〉〉))} =
{𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(#‘𝑥))∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1𝑜 ∖ 𝑧)〉”〉〉))}) |
| 23 | 22 | inteqd 4480 |
. . . 4
⊢ (𝑖 = 𝐼 → ∩ {𝑟 ∣ (𝑟 Er Word (𝑖 × 2𝑜) ∧
∀𝑥 ∈ Word
(𝑖 ×
2𝑜)∀𝑛 ∈ (0...(#‘𝑥))∀𝑦 ∈ 𝑖 ∀𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1𝑜 ∖ 𝑧)〉”〉〉))} =
∩ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(#‘𝑥))∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1𝑜 ∖ 𝑧)〉”〉〉))}) |
| 24 | | df-efg 18122 |
. . . 4
⊢
~FG = (𝑖
∈ V ↦ ∩ {𝑟 ∣ (𝑟 Er Word (𝑖 × 2𝑜) ∧
∀𝑥 ∈ Word
(𝑖 ×
2𝑜)∀𝑛 ∈ (0...(#‘𝑥))∀𝑦 ∈ 𝑖 ∀𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1𝑜 ∖ 𝑧)〉”〉〉))}) |
| 25 | 14 | efglem 18129 |
. . . . 5
⊢
∃𝑟(𝑟 Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(#‘𝑥))∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1𝑜 ∖ 𝑧)〉”〉〉)) |
| 26 | | intexab 4822 |
. . . . 5
⊢
(∃𝑟(𝑟 Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(#‘𝑥))∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1𝑜 ∖ 𝑧)〉”〉〉))
↔ ∩ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(#‘𝑥))∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1𝑜 ∖ 𝑧)〉”〉〉))}
∈ V) |
| 27 | 25, 26 | mpbi 220 |
. . . 4
⊢ ∩ {𝑟
∣ (𝑟 Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(#‘𝑥))∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1𝑜 ∖ 𝑧)〉”〉〉))}
∈ V |
| 28 | 23, 24, 27 | fvmpt 6282 |
. . 3
⊢ (𝐼 ∈ V → (
~FG ‘𝐼) = ∩ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(#‘𝑥))∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1𝑜 ∖ 𝑧)〉”〉〉))}) |
| 29 | | fvprc 6185 |
. . . 4
⊢ (¬
𝐼 ∈ V → (
~FG ‘𝐼) = ∅) |
| 30 | | abn0 3954 |
. . . . . . . 8
⊢ ({𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(#‘𝑥))∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1𝑜 ∖ 𝑧)〉”〉〉))}
≠ ∅ ↔ ∃𝑟(𝑟 Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(#‘𝑥))∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1𝑜 ∖ 𝑧)〉”〉〉))) |
| 31 | 25, 30 | mpbir 221 |
. . . . . . 7
⊢ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(#‘𝑥))∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1𝑜 ∖ 𝑧)〉”〉〉))}
≠ ∅ |
| 32 | | intssuni 4499 |
. . . . . . 7
⊢ ({𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(#‘𝑥))∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1𝑜 ∖ 𝑧)〉”〉〉))}
≠ ∅ → ∩ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(#‘𝑥))∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1𝑜 ∖ 𝑧)〉”〉〉))}
⊆ ∪ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(#‘𝑥))∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1𝑜 ∖ 𝑧)〉”〉〉))}) |
| 33 | 31, 32 | ax-mp 5 |
. . . . . 6
⊢ ∩ {𝑟
∣ (𝑟 Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(#‘𝑥))∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1𝑜 ∖ 𝑧)〉”〉〉))}
⊆ ∪ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(#‘𝑥))∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1𝑜 ∖ 𝑧)〉”〉〉))} |
| 34 | | erssxp 7765 |
. . . . . . . . . . . 12
⊢ (𝑟 Er 𝑊 → 𝑟 ⊆ (𝑊 × 𝑊)) |
| 35 | 14 | efgrcl 18128 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ 𝑊 → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 ×
2𝑜))) |
| 36 | 35 | simpld 475 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ 𝑊 → 𝐼 ∈ V) |
| 37 | 36 | con3i 150 |
. . . . . . . . . . . . . . . 16
⊢ (¬
𝐼 ∈ V → ¬
𝑥 ∈ 𝑊) |
| 38 | 37 | eq0rdv 3979 |
. . . . . . . . . . . . . . 15
⊢ (¬
𝐼 ∈ V → 𝑊 = ∅) |
| 39 | 38 | xpeq2d 5139 |
. . . . . . . . . . . . . 14
⊢ (¬
𝐼 ∈ V → (𝑊 × 𝑊) = (𝑊 × ∅)) |
| 40 | | xp0 5552 |
. . . . . . . . . . . . . 14
⊢ (𝑊 × ∅) =
∅ |
| 41 | 39, 40 | syl6eq 2672 |
. . . . . . . . . . . . 13
⊢ (¬
𝐼 ∈ V → (𝑊 × 𝑊) = ∅) |
| 42 | | ss0b 3973 |
. . . . . . . . . . . . 13
⊢ ((𝑊 × 𝑊) ⊆ ∅ ↔ (𝑊 × 𝑊) = ∅) |
| 43 | 41, 42 | sylibr 224 |
. . . . . . . . . . . 12
⊢ (¬
𝐼 ∈ V → (𝑊 × 𝑊) ⊆ ∅) |
| 44 | 34, 43 | sylan9ssr 3617 |
. . . . . . . . . . 11
⊢ ((¬
𝐼 ∈ V ∧ 𝑟 Er 𝑊) → 𝑟 ⊆ ∅) |
| 45 | 44 | ex 450 |
. . . . . . . . . 10
⊢ (¬
𝐼 ∈ V → (𝑟 Er 𝑊 → 𝑟 ⊆ ∅)) |
| 46 | 45 | adantrd 484 |
. . . . . . . . 9
⊢ (¬
𝐼 ∈ V → ((𝑟 Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(#‘𝑥))∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1𝑜 ∖ 𝑧)〉”〉〉))
→ 𝑟 ⊆
∅)) |
| 47 | 46 | alrimiv 1855 |
. . . . . . . 8
⊢ (¬
𝐼 ∈ V →
∀𝑟((𝑟 Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(#‘𝑥))∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1𝑜 ∖ 𝑧)〉”〉〉))
→ 𝑟 ⊆
∅)) |
| 48 | | sseq1 3626 |
. . . . . . . . 9
⊢ (𝑤 = 𝑟 → (𝑤 ⊆ ∅ ↔ 𝑟 ⊆ ∅)) |
| 49 | 48 | ralab2 3371 |
. . . . . . . 8
⊢
(∀𝑤 ∈
{𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(#‘𝑥))∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1𝑜 ∖ 𝑧)〉”〉〉))}𝑤 ⊆ ∅ ↔
∀𝑟((𝑟 Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(#‘𝑥))∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1𝑜 ∖ 𝑧)〉”〉〉))
→ 𝑟 ⊆
∅)) |
| 50 | 47, 49 | sylibr 224 |
. . . . . . 7
⊢ (¬
𝐼 ∈ V →
∀𝑤 ∈ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(#‘𝑥))∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1𝑜 ∖ 𝑧)〉”〉〉))}𝑤 ⊆
∅) |
| 51 | | unissb 4469 |
. . . . . . 7
⊢ (∪ {𝑟
∣ (𝑟 Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(#‘𝑥))∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1𝑜 ∖ 𝑧)〉”〉〉))}
⊆ ∅ ↔ ∀𝑤 ∈ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(#‘𝑥))∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1𝑜 ∖ 𝑧)〉”〉〉))}𝑤 ⊆
∅) |
| 52 | 50, 51 | sylibr 224 |
. . . . . 6
⊢ (¬
𝐼 ∈ V → ∪ {𝑟
∣ (𝑟 Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(#‘𝑥))∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1𝑜 ∖ 𝑧)〉”〉〉))}
⊆ ∅) |
| 53 | 33, 52 | syl5ss 3614 |
. . . . 5
⊢ (¬
𝐼 ∈ V → ∩ {𝑟
∣ (𝑟 Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(#‘𝑥))∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1𝑜 ∖ 𝑧)〉”〉〉))}
⊆ ∅) |
| 54 | | ss0 3974 |
. . . . 5
⊢ (∩ {𝑟
∣ (𝑟 Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(#‘𝑥))∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1𝑜 ∖ 𝑧)〉”〉〉))}
⊆ ∅ → ∩ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(#‘𝑥))∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1𝑜 ∖ 𝑧)〉”〉〉))} =
∅) |
| 55 | 53, 54 | syl 17 |
. . . 4
⊢ (¬
𝐼 ∈ V → ∩ {𝑟
∣ (𝑟 Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(#‘𝑥))∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1𝑜 ∖ 𝑧)〉”〉〉))} =
∅) |
| 56 | 29, 55 | eqtr4d 2659 |
. . 3
⊢ (¬
𝐼 ∈ V → (
~FG ‘𝐼) = ∩ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(#‘𝑥))∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1𝑜 ∖ 𝑧)〉”〉〉))}) |
| 57 | 28, 56 | pm2.61i 176 |
. 2
⊢ (
~FG ‘𝐼) = ∩ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(#‘𝑥))∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1𝑜 ∖ 𝑧)〉”〉〉))} |
| 58 | 1, 57 | eqtri 2644 |
1
⊢ ∼ =
∩ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(#‘𝑥))∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1𝑜 ∖ 𝑧)〉”〉〉))} |