MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfrtrcl2 Structured version   Visualization version   GIF version

Theorem dfrtrcl2 13802
Description: The two definitions t* and t*rec of the reflexive, transitive closure coincide if 𝑅 is indeed a relation. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.)
Hypotheses
Ref Expression
drrtrcl2.1 (𝜑 → Rel 𝑅)
drrtrcl2.2 (𝜑𝑅 ∈ V)
Assertion
Ref Expression
dfrtrcl2 (𝜑 → (t*‘𝑅) = (t*rec‘𝑅))

Proof of Theorem dfrtrcl2
Dummy variables 𝑥 𝑧 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2623 . . . 4 (𝜑 → (𝑥 ∈ V ↦ {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}) = (𝑥 ∈ V ↦ {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}))
2 dmeq 5324 . . . . . . . . . . 11 (𝑥 = 𝑅 → dom 𝑥 = dom 𝑅)
3 rneq 5351 . . . . . . . . . . 11 (𝑥 = 𝑅 → ran 𝑥 = ran 𝑅)
42, 3uneq12d 3768 . . . . . . . . . 10 (𝑥 = 𝑅 → (dom 𝑥 ∪ ran 𝑥) = (dom 𝑅 ∪ ran 𝑅))
54reseq2d 5396 . . . . . . . . 9 (𝑥 = 𝑅 → ( I ↾ (dom 𝑥 ∪ ran 𝑥)) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
65sseq1d 3632 . . . . . . . 8 (𝑥 = 𝑅 → (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧 ↔ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧))
7 id 22 . . . . . . . . 9 (𝑥 = 𝑅𝑥 = 𝑅)
87sseq1d 3632 . . . . . . . 8 (𝑥 = 𝑅 → (𝑥𝑧𝑅𝑧))
96, 83anbi12d 1400 . . . . . . 7 (𝑥 = 𝑅 → ((( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) ↔ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)))
109abbidv 2741 . . . . . 6 (𝑥 = 𝑅 → {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} = {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
1110inteqd 4480 . . . . 5 (𝑥 = 𝑅 {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} = {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
1211adantl 482 . . . 4 ((𝜑𝑥 = 𝑅) → {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} = {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
13 drrtrcl2.2 . . . 4 (𝜑𝑅 ∈ V)
14 drrtrcl2.1 . . . . . . . . . 10 (𝜑 → Rel 𝑅)
15 relfld 5661 . . . . . . . . . 10 (Rel 𝑅 𝑅 = (dom 𝑅 ∪ ran 𝑅))
1614, 15syl 17 . . . . . . . . 9 (𝜑 𝑅 = (dom 𝑅 ∪ ran 𝑅))
1716eqcomd 2628 . . . . . . . 8 (𝜑 → (dom 𝑅 ∪ ran 𝑅) = 𝑅)
1814, 13rtrclreclem1 13798 . . . . . . . . 9 (𝜑 → ( I ↾ 𝑅) ⊆ (t*rec‘𝑅))
19 id 22 . . . . . . . . . . 11 ((dom 𝑅 ∪ ran 𝑅) = 𝑅 → (dom 𝑅 ∪ ran 𝑅) = 𝑅)
2019reseq2d 5396 . . . . . . . . . 10 ((dom 𝑅 ∪ ran 𝑅) = 𝑅 → ( I ↾ (dom 𝑅 ∪ ran 𝑅)) = ( I ↾ 𝑅))
2120sseq1d 3632 . . . . . . . . 9 ((dom 𝑅 ∪ ran 𝑅) = 𝑅 → (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ (t*rec‘𝑅) ↔ ( I ↾ 𝑅) ⊆ (t*rec‘𝑅)))
2218, 21syl5ibr 236 . . . . . . . 8 ((dom 𝑅 ∪ ran 𝑅) = 𝑅 → (𝜑 → ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ (t*rec‘𝑅)))
2317, 22mpcom 38 . . . . . . 7 (𝜑 → ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ (t*rec‘𝑅))
2413rtrclreclem2 13799 . . . . . . 7 (𝜑𝑅 ⊆ (t*rec‘𝑅))
2514, 13rtrclreclem3 13800 . . . . . . 7 (𝜑 → ((t*rec‘𝑅) ∘ (t*rec‘𝑅)) ⊆ (t*rec‘𝑅))
26 fvex 6201 . . . . . . . 8 (t*rec‘𝑅) ∈ V
27 sseq2 3627 . . . . . . . . . . 11 (𝑧 = (t*rec‘𝑅) → (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧 ↔ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ (t*rec‘𝑅)))
28 sseq2 3627 . . . . . . . . . . 11 (𝑧 = (t*rec‘𝑅) → (𝑅𝑧𝑅 ⊆ (t*rec‘𝑅)))
29 id 22 . . . . . . . . . . . . 13 (𝑧 = (t*rec‘𝑅) → 𝑧 = (t*rec‘𝑅))
3029, 29coeq12d 5286 . . . . . . . . . . . 12 (𝑧 = (t*rec‘𝑅) → (𝑧𝑧) = ((t*rec‘𝑅) ∘ (t*rec‘𝑅)))
3130, 29sseq12d 3634 . . . . . . . . . . 11 (𝑧 = (t*rec‘𝑅) → ((𝑧𝑧) ⊆ 𝑧 ↔ ((t*rec‘𝑅) ∘ (t*rec‘𝑅)) ⊆ (t*rec‘𝑅)))
3227, 28, 313anbi123d 1399 . . . . . . . . . 10 (𝑧 = (t*rec‘𝑅) → ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) ↔ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ (t*rec‘𝑅) ∧ 𝑅 ⊆ (t*rec‘𝑅) ∧ ((t*rec‘𝑅) ∘ (t*rec‘𝑅)) ⊆ (t*rec‘𝑅))))
3332a1i 11 . . . . . . . . 9 (𝜑 → (𝑧 = (t*rec‘𝑅) → ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) ↔ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ (t*rec‘𝑅) ∧ 𝑅 ⊆ (t*rec‘𝑅) ∧ ((t*rec‘𝑅) ∘ (t*rec‘𝑅)) ⊆ (t*rec‘𝑅)))))
3433alrimiv 1855 . . . . . . . 8 (𝜑 → ∀𝑧(𝑧 = (t*rec‘𝑅) → ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) ↔ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ (t*rec‘𝑅) ∧ 𝑅 ⊆ (t*rec‘𝑅) ∧ ((t*rec‘𝑅) ∘ (t*rec‘𝑅)) ⊆ (t*rec‘𝑅)))))
35 elabgt 3347 . . . . . . . 8 (((t*rec‘𝑅) ∈ V ∧ ∀𝑧(𝑧 = (t*rec‘𝑅) → ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) ↔ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ (t*rec‘𝑅) ∧ 𝑅 ⊆ (t*rec‘𝑅) ∧ ((t*rec‘𝑅) ∘ (t*rec‘𝑅)) ⊆ (t*rec‘𝑅))))) → ((t*rec‘𝑅) ∈ {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ↔ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ (t*rec‘𝑅) ∧ 𝑅 ⊆ (t*rec‘𝑅) ∧ ((t*rec‘𝑅) ∘ (t*rec‘𝑅)) ⊆ (t*rec‘𝑅))))
3626, 34, 35sylancr 695 . . . . . . 7 (𝜑 → ((t*rec‘𝑅) ∈ {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ↔ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ (t*rec‘𝑅) ∧ 𝑅 ⊆ (t*rec‘𝑅) ∧ ((t*rec‘𝑅) ∘ (t*rec‘𝑅)) ⊆ (t*rec‘𝑅))))
3723, 24, 25, 36mpbir3and 1245 . . . . . 6 (𝜑 → (t*rec‘𝑅) ∈ {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
38 ne0i 3921 . . . . . 6 ((t*rec‘𝑅) ∈ {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} → {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ≠ ∅)
3937, 38syl 17 . . . . 5 (𝜑 → {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ≠ ∅)
40 intex 4820 . . . . 5 ({𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ≠ ∅ ↔ {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ∈ V)
4139, 40sylib 208 . . . 4 (𝜑 {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ∈ V)
421, 12, 13, 41fvmptd 6288 . . 3 (𝜑 → ((𝑥 ∈ V ↦ {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})‘𝑅) = {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
43 intss1 4492 . . . . 5 ((t*rec‘𝑅) ∈ {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} → {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ⊆ (t*rec‘𝑅))
4437, 43syl 17 . . . 4 (𝜑 {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ⊆ (t*rec‘𝑅))
45 vex 3203 . . . . . . . 8 𝑠 ∈ V
46 sseq2 3627 . . . . . . . . 9 (𝑧 = 𝑠 → (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧 ↔ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠))
47 sseq2 3627 . . . . . . . . 9 (𝑧 = 𝑠 → (𝑅𝑧𝑅𝑠))
48 id 22 . . . . . . . . . . 11 (𝑧 = 𝑠𝑧 = 𝑠)
4948, 48coeq12d 5286 . . . . . . . . . 10 (𝑧 = 𝑠 → (𝑧𝑧) = (𝑠𝑠))
5049, 48sseq12d 3634 . . . . . . . . 9 (𝑧 = 𝑠 → ((𝑧𝑧) ⊆ 𝑧 ↔ (𝑠𝑠) ⊆ 𝑠))
5146, 47, 503anbi123d 1399 . . . . . . . 8 (𝑧 = 𝑠 → ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) ↔ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)))
5245, 51elab 3350 . . . . . . 7 (𝑠 ∈ {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ↔ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠))
5314, 13rtrclreclem4 13801 . . . . . . . 8 (𝜑 → ∀𝑠((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → (t*rec‘𝑅) ⊆ 𝑠))
545319.21bi 2059 . . . . . . 7 (𝜑 → ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → (t*rec‘𝑅) ⊆ 𝑠))
5552, 54syl5bi 232 . . . . . 6 (𝜑 → (𝑠 ∈ {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} → (t*rec‘𝑅) ⊆ 𝑠))
5655ralrimiv 2965 . . . . 5 (𝜑 → ∀𝑠 ∈ {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} (t*rec‘𝑅) ⊆ 𝑠)
57 ssint 4493 . . . . 5 ((t*rec‘𝑅) ⊆ {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ↔ ∀𝑠 ∈ {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} (t*rec‘𝑅) ⊆ 𝑠)
5856, 57sylibr 224 . . . 4 (𝜑 → (t*rec‘𝑅) ⊆ {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
5944, 58eqssd 3620 . . 3 (𝜑 {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} = (t*rec‘𝑅))
6042, 59eqtrd 2656 . 2 (𝜑 → ((𝑥 ∈ V ↦ {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})‘𝑅) = (t*rec‘𝑅))
61 df-rtrcl 13727 . . 3 t* = (𝑥 ∈ V ↦ {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
62 fveq1 6190 . . . . 5 (t* = (𝑥 ∈ V ↦ {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}) → (t*‘𝑅) = ((𝑥 ∈ V ↦ {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})‘𝑅))
6362eqeq1d 2624 . . . 4 (t* = (𝑥 ∈ V ↦ {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}) → ((t*‘𝑅) = (t*rec‘𝑅) ↔ ((𝑥 ∈ V ↦ {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})‘𝑅) = (t*rec‘𝑅)))
6463imbi2d 330 . . 3 (t* = (𝑥 ∈ V ↦ {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}) → ((𝜑 → (t*‘𝑅) = (t*rec‘𝑅)) ↔ (𝜑 → ((𝑥 ∈ V ↦ {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})‘𝑅) = (t*rec‘𝑅))))
6561, 64ax-mp 5 . 2 ((𝜑 → (t*‘𝑅) = (t*rec‘𝑅)) ↔ (𝜑 → ((𝑥 ∈ V ↦ {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})‘𝑅) = (t*rec‘𝑅)))
6660, 65mpbir 221 1 (𝜑 → (t*‘𝑅) = (t*rec‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  w3a 1037  wal 1481   = wceq 1483  wcel 1990  {cab 2608  wne 2794  wral 2912  Vcvv 3200  cun 3572  wss 3574  c0 3915   cuni 4436   cint 4475  cmpt 4729   I cid 5023  dom cdm 5114  ran crn 5115  cres 5116  ccom 5118  Rel wrel 5119  cfv 5888  t*crtcl 13725  t*reccrtrcl 13795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-seq 12802  df-rtrcl 13727  df-relexp 13761  df-rtrclrec 13796
This theorem is referenced by:  rtrclind  13805
  Copyright terms: Public domain W3C validator