MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cgracgr Structured version   Visualization version   GIF version

Theorem cgracgr 25710
Description: First direction of proposition 11.4 of [Schwabhauser] p. 95. Again, this is "half" of the proposition, i.e. only two additional points are used, while Schwabhauser has four. (Contributed by Thierry Arnoux, 31-Jul-2020.)
Hypotheses
Ref Expression
iscgra.p 𝑃 = (Base‘𝐺)
iscgra.i 𝐼 = (Itv‘𝐺)
iscgra.k 𝐾 = (hlG‘𝐺)
iscgra.g (𝜑𝐺 ∈ TarskiG)
iscgra.a (𝜑𝐴𝑃)
iscgra.b (𝜑𝐵𝑃)
iscgra.c (𝜑𝐶𝑃)
iscgra.d (𝜑𝐷𝑃)
iscgra.e (𝜑𝐸𝑃)
iscgra.f (𝜑𝐹𝑃)
cgrahl1.2 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
cgrahl1.x (𝜑𝑋𝑃)
cgracgr.m = (dist‘𝐺)
cgracgr.y (𝜑𝑌𝑃)
cgracgr.1 (𝜑𝑋(𝐾𝐵)𝐴)
cgracgr.2 (𝜑𝑌(𝐾𝐵)𝐶)
cgracgr.3 (𝜑 → (𝐵 𝑋) = (𝐸 𝐷))
cgracgr.4 (𝜑 → (𝐵 𝑌) = (𝐸 𝐹))
Assertion
Ref Expression
cgracgr (𝜑 → (𝑋 𝑌) = (𝐷 𝐹))

Proof of Theorem cgracgr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iscgra.p . . 3 𝑃 = (Base‘𝐺)
2 eqid 2622 . . 3 (LineG‘𝐺) = (LineG‘𝐺)
3 iscgra.i . . 3 𝐼 = (Itv‘𝐺)
4 iscgra.g . . . 4 (𝜑𝐺 ∈ TarskiG)
54ad3antrrr 766 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → 𝐺 ∈ TarskiG)
6 iscgra.a . . . 4 (𝜑𝐴𝑃)
76ad3antrrr 766 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → 𝐴𝑃)
8 iscgra.b . . . 4 (𝜑𝐵𝑃)
98ad3antrrr 766 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → 𝐵𝑃)
10 cgrahl1.x . . . 4 (𝜑𝑋𝑃)
1110ad3antrrr 766 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → 𝑋𝑃)
12 eqid 2622 . . 3 (cgrG‘𝐺) = (cgrG‘𝐺)
13 simpllr 799 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → 𝑥𝑃)
14 iscgra.e . . . 4 (𝜑𝐸𝑃)
1514ad3antrrr 766 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → 𝐸𝑃)
16 cgracgr.m . . 3 = (dist‘𝐺)
17 cgracgr.y . . . 4 (𝜑𝑌𝑃)
1817ad3antrrr 766 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → 𝑌𝑃)
19 iscgra.d . . . 4 (𝜑𝐷𝑃)
2019ad3antrrr 766 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → 𝐷𝑃)
21 iscgra.f . . . 4 (𝜑𝐹𝑃)
2221ad3antrrr 766 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → 𝐹𝑃)
23 iscgra.k . . . . . . . . 9 𝐾 = (hlG‘𝐺)
24 iscgra.c . . . . . . . . 9 (𝜑𝐶𝑃)
25 cgrahl1.2 . . . . . . . . 9 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
261, 3, 23, 4, 6, 8, 24, 19, 14, 21, 25cgrane1 25704 . . . . . . . 8 (𝜑𝐴𝐵)
2726necomd 2849 . . . . . . 7 (𝜑𝐵𝐴)
28 cgracgr.1 . . . . . . . 8 (𝜑𝑋(𝐾𝐵)𝐴)
291, 3, 23, 10, 6, 8, 4, 2, 28hlln 25502 . . . . . . 7 (𝜑𝑋 ∈ (𝐴(LineG‘𝐺)𝐵))
301, 3, 2, 4, 8, 6, 10, 27, 29lncom 25517 . . . . . 6 (𝜑𝑋 ∈ (𝐵(LineG‘𝐺)𝐴))
3130orcd 407 . . . . 5 (𝜑 → (𝑋 ∈ (𝐵(LineG‘𝐺)𝐴) ∨ 𝐵 = 𝐴))
321, 2, 3, 4, 8, 6, 10, 31colrot1 25454 . . . 4 (𝜑 → (𝐵 ∈ (𝐴(LineG‘𝐺)𝑋) ∨ 𝐴 = 𝑋))
3332ad3antrrr 766 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝐵 ∈ (𝐴(LineG‘𝐺)𝑋) ∨ 𝐴 = 𝑋))
3424ad3antrrr 766 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → 𝐶𝑃)
35 simplr 792 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → 𝑦𝑃)
36 simpr1 1067 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩)
371, 16, 3, 12, 5, 7, 9, 34, 13, 15, 35, 36cgr3simp1 25415 . . . 4 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝐴 𝐵) = (𝑥 𝐸))
38 cgracgr.3 . . . . 5 (𝜑 → (𝐵 𝑋) = (𝐸 𝐷))
3938ad3antrrr 766 . . . 4 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝐵 𝑋) = (𝐸 𝐷))
40 eqid 2622 . . . . . . 7 (≤G‘𝐺) = (≤G‘𝐺)
41 simpr2 1068 . . . . . . . . 9 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → 𝑥(𝐾𝐸)𝐷)
421, 3, 23, 13, 20, 15, 5ishlg 25497 . . . . . . . . 9 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝑥(𝐾𝐸)𝐷 ↔ (𝑥𝐸𝐷𝐸 ∧ (𝑥 ∈ (𝐸𝐼𝐷) ∨ 𝐷 ∈ (𝐸𝐼𝑥)))))
4341, 42mpbid 222 . . . . . . . 8 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝑥𝐸𝐷𝐸 ∧ (𝑥 ∈ (𝐸𝐼𝐷) ∨ 𝐷 ∈ (𝐸𝐼𝑥))))
4443simp3d 1075 . . . . . . 7 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝑥 ∈ (𝐸𝐼𝐷) ∨ 𝐷 ∈ (𝐸𝐼𝑥)))
451, 3, 23, 10, 6, 8, 4ishlg 25497 . . . . . . . . . . 11 (𝜑 → (𝑋(𝐾𝐵)𝐴 ↔ (𝑋𝐵𝐴𝐵 ∧ (𝑋 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝑋)))))
4628, 45mpbid 222 . . . . . . . . . 10 (𝜑 → (𝑋𝐵𝐴𝐵 ∧ (𝑋 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝑋))))
4746simp3d 1075 . . . . . . . . 9 (𝜑 → (𝑋 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝑋)))
4847orcomd 403 . . . . . . . 8 (𝜑 → (𝐴 ∈ (𝐵𝐼𝑋) ∨ 𝑋 ∈ (𝐵𝐼𝐴)))
4948ad3antrrr 766 . . . . . . 7 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝐴 ∈ (𝐵𝐼𝑋) ∨ 𝑋 ∈ (𝐵𝐼𝐴)))
5037eqcomd 2628 . . . . . . . 8 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝑥 𝐸) = (𝐴 𝐵))
511, 16, 3, 5, 13, 15, 7, 9, 50tgcgrcomlr 25375 . . . . . . 7 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝐸 𝑥) = (𝐵 𝐴))
5239eqcomd 2628 . . . . . . 7 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝐸 𝐷) = (𝐵 𝑋))
531, 16, 3, 40, 5, 15, 13, 20, 9, 9, 7, 11, 44, 49, 51, 52tgcgrsub2 25490 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝑥 𝐷) = (𝐴 𝑋))
5453eqcomd 2628 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝐴 𝑋) = (𝑥 𝐷))
551, 16, 3, 5, 7, 11, 13, 20, 54tgcgrcomlr 25375 . . . 4 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝑋 𝐴) = (𝐷 𝑥))
561, 16, 12, 5, 7, 9, 11, 13, 15, 20, 37, 39, 55trgcgr 25411 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝐷”⟩)
57 cgracgr.2 . . . . . . . . 9 (𝜑𝑌(𝐾𝐵)𝐶)
581, 3, 23, 17, 24, 8, 4, 2, 57hlln 25502 . . . . . . . 8 (𝜑𝑌 ∈ (𝐶(LineG‘𝐺)𝐵))
5958orcd 407 . . . . . . 7 (𝜑 → (𝑌 ∈ (𝐶(LineG‘𝐺)𝐵) ∨ 𝐶 = 𝐵))
601, 2, 3, 4, 24, 8, 17, 59colrot1 25454 . . . . . 6 (𝜑 → (𝐶 ∈ (𝐵(LineG‘𝐺)𝑌) ∨ 𝐵 = 𝑌))
6160ad3antrrr 766 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝐶 ∈ (𝐵(LineG‘𝐺)𝑌) ∨ 𝐵 = 𝑌))
621, 16, 3, 12, 5, 7, 9, 34, 13, 15, 35, 36cgr3simp2 25416 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝐵 𝐶) = (𝐸 𝑦))
631, 3, 23, 17, 24, 8, 4ishlg 25497 . . . . . . . . . . 11 (𝜑 → (𝑌(𝐾𝐵)𝐶 ↔ (𝑌𝐵𝐶𝐵 ∧ (𝑌 ∈ (𝐵𝐼𝐶) ∨ 𝐶 ∈ (𝐵𝐼𝑌)))))
6457, 63mpbid 222 . . . . . . . . . 10 (𝜑 → (𝑌𝐵𝐶𝐵 ∧ (𝑌 ∈ (𝐵𝐼𝐶) ∨ 𝐶 ∈ (𝐵𝐼𝑌))))
6564simp3d 1075 . . . . . . . . 9 (𝜑 → (𝑌 ∈ (𝐵𝐼𝐶) ∨ 𝐶 ∈ (𝐵𝐼𝑌)))
6665orcomd 403 . . . . . . . 8 (𝜑 → (𝐶 ∈ (𝐵𝐼𝑌) ∨ 𝑌 ∈ (𝐵𝐼𝐶)))
6766ad3antrrr 766 . . . . . . 7 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝐶 ∈ (𝐵𝐼𝑌) ∨ 𝑌 ∈ (𝐵𝐼𝐶)))
68 simpr3 1069 . . . . . . . . 9 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → 𝑦(𝐾𝐸)𝐹)
691, 3, 23, 35, 22, 15, 5ishlg 25497 . . . . . . . . 9 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝑦(𝐾𝐸)𝐹 ↔ (𝑦𝐸𝐹𝐸 ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∨ 𝐹 ∈ (𝐸𝐼𝑦)))))
7068, 69mpbid 222 . . . . . . . 8 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝑦𝐸𝐹𝐸 ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∨ 𝐹 ∈ (𝐸𝐼𝑦))))
7170simp3d 1075 . . . . . . 7 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝑦 ∈ (𝐸𝐼𝐹) ∨ 𝐹 ∈ (𝐸𝐼𝑦)))
72 cgracgr.4 . . . . . . . 8 (𝜑 → (𝐵 𝑌) = (𝐸 𝐹))
7372ad3antrrr 766 . . . . . . 7 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝐵 𝑌) = (𝐸 𝐹))
741, 16, 3, 40, 5, 9, 34, 18, 15, 15, 35, 22, 67, 71, 62, 73tgcgrsub2 25490 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝐶 𝑌) = (𝑦 𝐹))
751, 16, 3, 5, 9, 18, 15, 22, 73tgcgrcomlr 25375 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝑌 𝐵) = (𝐹 𝐸))
761, 16, 12, 5, 9, 34, 18, 15, 35, 22, 62, 74, 75trgcgr 25411 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → ⟨“𝐵𝐶𝑌”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝐹”⟩)
7751eqcomd 2628 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝐵 𝐴) = (𝐸 𝑥))
781, 16, 3, 12, 5, 7, 9, 34, 13, 15, 35, 36cgr3simp3 25417 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝐶 𝐴) = (𝑦 𝑥))
791, 3, 23, 4, 6, 8, 24, 19, 14, 21, 25cgrane2 25705 . . . . . 6 (𝜑𝐵𝐶)
8079ad3antrrr 766 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → 𝐵𝐶)
811, 2, 3, 5, 9, 34, 18, 12, 15, 35, 16, 7, 22, 13, 61, 76, 77, 78, 80tgfscgr 25463 . . . 4 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝑌 𝐴) = (𝐹 𝑥))
821, 16, 3, 5, 18, 7, 22, 13, 81tgcgrcomlr 25375 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝐴 𝑌) = (𝑥 𝐹))
8326ad3antrrr 766 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → 𝐴𝐵)
841, 2, 3, 5, 7, 9, 11, 12, 13, 15, 16, 18, 20, 22, 33, 56, 82, 73, 83tgfscgr 25463 . 2 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝑋 𝑌) = (𝐷 𝐹))
851, 3, 23, 4, 6, 8, 24, 19, 14, 21iscgra 25701 . . 3 (𝜑 → (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ↔ ∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)))
8625, 85mpbid 222 . 2 (𝜑 → ∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹))
8784, 86r19.29vva 3081 1 (𝜑 → (𝑋 𝑌) = (𝐷 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wrex 2913   class class class wbr 4653  cfv 5888  (class class class)co 6650  ⟨“cs3 13587  Basecbs 15857  distcds 15950  TarskiGcstrkg 25329  Itvcitv 25335  LineGclng 25336  cgrGccgrg 25405  ≤Gcleg 25477  hlGchlg 25495  cgrAccgra 25699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594  df-trkgc 25347  df-trkgb 25348  df-trkgcb 25349  df-trkg 25352  df-cgrg 25406  df-leg 25478  df-hlg 25496  df-cgra 25700
This theorem is referenced by:  cgracom  25714  cgratr  25715  dfcgra2  25721  tgsas1  25735  tgasa1  25739
  Copyright terms: Public domain W3C validator