MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismbf Structured version   Visualization version   GIF version

Theorem ismbf 23397
Description: The predicate "𝐹 is a measurable function". A function is measurable iff the preimages of all open intervals are measurable sets in the sense of ismbl 23294. (Contributed by Mario Carneiro, 17-Jun-2014.)
Assertion
Ref Expression
ismbf (𝐹:𝐴⟶ℝ → (𝐹 ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(𝐹𝑥) ∈ dom vol))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐴

Proof of Theorem ismbf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 mbfdm 23395 . . 3 (𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol)
2 fdm 6051 . . . 4 (𝐹:𝐴⟶ℝ → dom 𝐹 = 𝐴)
32eleq1d 2686 . . 3 (𝐹:𝐴⟶ℝ → (dom 𝐹 ∈ dom vol ↔ 𝐴 ∈ dom vol))
41, 3syl5ib 234 . 2 (𝐹:𝐴⟶ℝ → (𝐹 ∈ MblFn → 𝐴 ∈ dom vol))
5 ioomax 12248 . . . . 5 (-∞(,)+∞) = ℝ
6 ioorebas 12275 . . . . 5 (-∞(,)+∞) ∈ ran (,)
75, 6eqeltrri 2698 . . . 4 ℝ ∈ ran (,)
8 imaeq2 5462 . . . . . 6 (𝑥 = ℝ → (𝐹𝑥) = (𝐹 “ ℝ))
98eleq1d 2686 . . . . 5 (𝑥 = ℝ → ((𝐹𝑥) ∈ dom vol ↔ (𝐹 “ ℝ) ∈ dom vol))
109rspcv 3305 . . . 4 (ℝ ∈ ran (,) → (∀𝑥 ∈ ran (,)(𝐹𝑥) ∈ dom vol → (𝐹 “ ℝ) ∈ dom vol))
117, 10ax-mp 5 . . 3 (∀𝑥 ∈ ran (,)(𝐹𝑥) ∈ dom vol → (𝐹 “ ℝ) ∈ dom vol)
12 fimacnv 6347 . . . 4 (𝐹:𝐴⟶ℝ → (𝐹 “ ℝ) = 𝐴)
1312eleq1d 2686 . . 3 (𝐹:𝐴⟶ℝ → ((𝐹 “ ℝ) ∈ dom vol ↔ 𝐴 ∈ dom vol))
1411, 13syl5ib 234 . 2 (𝐹:𝐴⟶ℝ → (∀𝑥 ∈ ran (,)(𝐹𝑥) ∈ dom vol → 𝐴 ∈ dom vol))
15 ffvelrn 6357 . . . . . . . . . . . . . 14 ((𝐹:𝐴⟶ℝ ∧ 𝑥𝐴) → (𝐹𝑥) ∈ ℝ)
1615adantlr 751 . . . . . . . . . . . . 13 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ ℝ)
1716rered 13964 . . . . . . . . . . . 12 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) ∧ 𝑥𝐴) → (ℜ‘(𝐹𝑥)) = (𝐹𝑥))
1817mpteq2dva 4744 . . . . . . . . . . 11 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → (𝑥𝐴 ↦ (ℜ‘(𝐹𝑥))) = (𝑥𝐴 ↦ (𝐹𝑥)))
1916recnd 10068 . . . . . . . . . . . 12 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ ℂ)
20 simpl 473 . . . . . . . . . . . . 13 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → 𝐹:𝐴⟶ℝ)
2120feqmptd 6249 . . . . . . . . . . . 12 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → 𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
22 ref 13852 . . . . . . . . . . . . . 14 ℜ:ℂ⟶ℝ
2322a1i 11 . . . . . . . . . . . . 13 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → ℜ:ℂ⟶ℝ)
2423feqmptd 6249 . . . . . . . . . . . 12 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → ℜ = (𝑦 ∈ ℂ ↦ (ℜ‘𝑦)))
25 fveq2 6191 . . . . . . . . . . . 12 (𝑦 = (𝐹𝑥) → (ℜ‘𝑦) = (ℜ‘(𝐹𝑥)))
2619, 21, 24, 25fmptco 6396 . . . . . . . . . . 11 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → (ℜ ∘ 𝐹) = (𝑥𝐴 ↦ (ℜ‘(𝐹𝑥))))
2718, 26, 213eqtr4rd 2667 . . . . . . . . . 10 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → 𝐹 = (ℜ ∘ 𝐹))
2827cnveqd 5298 . . . . . . . . 9 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → 𝐹 = (ℜ ∘ 𝐹))
2928imaeq1d 5465 . . . . . . . 8 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → (𝐹𝑥) = ((ℜ ∘ 𝐹) “ 𝑥))
3029eleq1d 2686 . . . . . . 7 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → ((𝐹𝑥) ∈ dom vol ↔ ((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol))
31 imf 13853 . . . . . . . . . . . . . . . 16 ℑ:ℂ⟶ℝ
3231a1i 11 . . . . . . . . . . . . . . 15 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → ℑ:ℂ⟶ℝ)
3332feqmptd 6249 . . . . . . . . . . . . . 14 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → ℑ = (𝑦 ∈ ℂ ↦ (ℑ‘𝑦)))
34 fveq2 6191 . . . . . . . . . . . . . 14 (𝑦 = (𝐹𝑥) → (ℑ‘𝑦) = (ℑ‘(𝐹𝑥)))
3519, 21, 33, 34fmptco 6396 . . . . . . . . . . . . 13 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → (ℑ ∘ 𝐹) = (𝑥𝐴 ↦ (ℑ‘(𝐹𝑥))))
3616reim0d 13965 . . . . . . . . . . . . . 14 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) ∧ 𝑥𝐴) → (ℑ‘(𝐹𝑥)) = 0)
3736mpteq2dva 4744 . . . . . . . . . . . . 13 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → (𝑥𝐴 ↦ (ℑ‘(𝐹𝑥))) = (𝑥𝐴 ↦ 0))
3835, 37eqtrd 2656 . . . . . . . . . . . 12 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → (ℑ ∘ 𝐹) = (𝑥𝐴 ↦ 0))
39 fconstmpt 5163 . . . . . . . . . . . 12 (𝐴 × {0}) = (𝑥𝐴 ↦ 0)
4038, 39syl6eqr 2674 . . . . . . . . . . 11 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → (ℑ ∘ 𝐹) = (𝐴 × {0}))
4140cnveqd 5298 . . . . . . . . . 10 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → (ℑ ∘ 𝐹) = (𝐴 × {0}))
4241imaeq1d 5465 . . . . . . . . 9 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → ((ℑ ∘ 𝐹) “ 𝑥) = ((𝐴 × {0}) “ 𝑥))
43 simpr 477 . . . . . . . . . 10 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → 𝐴 ∈ dom vol)
44 0re 10040 . . . . . . . . . 10 0 ∈ ℝ
45 mbfconstlem 23396 . . . . . . . . . 10 ((𝐴 ∈ dom vol ∧ 0 ∈ ℝ) → ((𝐴 × {0}) “ 𝑥) ∈ dom vol)
4643, 44, 45sylancl 694 . . . . . . . . 9 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → ((𝐴 × {0}) “ 𝑥) ∈ dom vol)
4742, 46eqeltrd 2701 . . . . . . . 8 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)
4847biantrud 528 . . . . . . 7 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → (((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ↔ (((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)))
4930, 48bitrd 268 . . . . . 6 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → ((𝐹𝑥) ∈ dom vol ↔ (((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)))
5049ralbidv 2986 . . . . 5 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → (∀𝑥 ∈ ran (,)(𝐹𝑥) ∈ dom vol ↔ ∀𝑥 ∈ ran (,)(((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)))
51 ax-resscn 9993 . . . . . . . 8 ℝ ⊆ ℂ
52 fss 6056 . . . . . . . 8 ((𝐹:𝐴⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:𝐴⟶ℂ)
5351, 52mpan2 707 . . . . . . 7 (𝐹:𝐴⟶ℝ → 𝐹:𝐴⟶ℂ)
54 mblss 23299 . . . . . . 7 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
55 cnex 10017 . . . . . . . 8 ℂ ∈ V
56 reex 10027 . . . . . . . 8 ℝ ∈ V
57 elpm2r 7875 . . . . . . . 8 (((ℂ ∈ V ∧ ℝ ∈ V) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ)) → 𝐹 ∈ (ℂ ↑pm ℝ))
5855, 56, 57mpanl12 718 . . . . . . 7 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → 𝐹 ∈ (ℂ ↑pm ℝ))
5953, 54, 58syl2an 494 . . . . . 6 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → 𝐹 ∈ (ℂ ↑pm ℝ))
6059biantrurd 529 . . . . 5 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → (∀𝑥 ∈ ran (,)(((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol) ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∀𝑥 ∈ ran (,)(((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol))))
6150, 60bitrd 268 . . . 4 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → (∀𝑥 ∈ ran (,)(𝐹𝑥) ∈ dom vol ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∀𝑥 ∈ ran (,)(((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol))))
62 ismbf1 23393 . . . 4 (𝐹 ∈ MblFn ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∀𝑥 ∈ ran (,)(((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)))
6361, 62syl6rbbr 279 . . 3 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → (𝐹 ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(𝐹𝑥) ∈ dom vol))
6463ex 450 . 2 (𝐹:𝐴⟶ℝ → (𝐴 ∈ dom vol → (𝐹 ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(𝐹𝑥) ∈ dom vol)))
654, 14, 64pm5.21ndd 369 1 (𝐹:𝐴⟶ℝ → (𝐹 ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(𝐹𝑥) ∈ dom vol))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200  wss 3574  {csn 4177  cmpt 4729   × cxp 5112  ccnv 5113  dom cdm 5114  ran crn 5115  cima 5117  ccom 5118  wf 5884  cfv 5888  (class class class)co 6650  pm cpm 7858  cc 9934  cr 9935  0cc0 9936  +∞cpnf 10071  -∞cmnf 10072  (,)cioo 12175  cre 13837  cim 13838  volcvol 23232  MblFncmbf 23383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xadd 11947  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-xmet 19739  df-met 19740  df-ovol 23233  df-vol 23234  df-mbf 23388
This theorem is referenced by:  ismbfcn  23398  mbfima  23399  mbfid  23403  ismbfd  23407  mbfeqalem  23409  mbfres2  23412  mbfimaopnlem  23422  i1fd  23448  elmbfmvol2  30329  cnambfre  33458  mbf0  40173
  Copyright terms: Public domain W3C validator