MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isph Structured version   Visualization version   GIF version

Theorem isph 27677
Description: The predicate "is an inner product space." (Contributed by NM, 1-Feb-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
isph.1 𝑋 = (BaseSet‘𝑈)
isph.2 𝐺 = ( +𝑣𝑈)
isph.3 𝑀 = ( −𝑣𝑈)
isph.6 𝑁 = (normCV𝑈)
Assertion
Ref Expression
isph (𝑈 ∈ CPreHilOLD ↔ (𝑈 ∈ NrmCVec ∧ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝑀𝑦))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2)))))
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝑥,𝑈,𝑦   𝑥,𝑋,𝑦

Proof of Theorem isph
StepHypRef Expression
1 phnv 27669 . 2 (𝑈 ∈ CPreHilOLD𝑈 ∈ NrmCVec)
2 isph.2 . . . . 5 𝐺 = ( +𝑣𝑈)
3 eqid 2622 . . . . 5 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
4 isph.6 . . . . 5 𝑁 = (normCV𝑈)
52, 3, 4nvop 27531 . . . 4 (𝑈 ∈ NrmCVec → 𝑈 = ⟨⟨𝐺, ( ·𝑠OLD𝑈)⟩, 𝑁⟩)
6 eleq1 2689 . . . . 5 (𝑈 = ⟨⟨𝐺, ( ·𝑠OLD𝑈)⟩, 𝑁⟩ → (𝑈 ∈ CPreHilOLD ↔ ⟨⟨𝐺, ( ·𝑠OLD𝑈)⟩, 𝑁⟩ ∈ CPreHilOLD))
7 fvex 6201 . . . . . . . 8 ( +𝑣𝑈) ∈ V
82, 7eqeltri 2697 . . . . . . 7 𝐺 ∈ V
9 fvex 6201 . . . . . . 7 ( ·𝑠OLD𝑈) ∈ V
10 fvex 6201 . . . . . . . 8 (normCV𝑈) ∈ V
114, 10eqeltri 2697 . . . . . . 7 𝑁 ∈ V
12 isph.1 . . . . . . . . 9 𝑋 = (BaseSet‘𝑈)
1312, 2bafval 27459 . . . . . . . 8 𝑋 = ran 𝐺
1413isphg 27672 . . . . . . 7 ((𝐺 ∈ V ∧ ( ·𝑠OLD𝑈) ∈ V ∧ 𝑁 ∈ V) → (⟨⟨𝐺, ( ·𝑠OLD𝑈)⟩, 𝑁⟩ ∈ CPreHilOLD ↔ (⟨⟨𝐺, ( ·𝑠OLD𝑈)⟩, 𝑁⟩ ∈ NrmCVec ∧ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1( ·𝑠OLD𝑈)𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))))))
158, 9, 11, 14mp3an 1424 . . . . . 6 (⟨⟨𝐺, ( ·𝑠OLD𝑈)⟩, 𝑁⟩ ∈ CPreHilOLD ↔ (⟨⟨𝐺, ( ·𝑠OLD𝑈)⟩, 𝑁⟩ ∈ NrmCVec ∧ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1( ·𝑠OLD𝑈)𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2)))))
16 isph.3 . . . . . . . . . . . . . . . 16 𝑀 = ( −𝑣𝑈)
1712, 2, 3, 16nvmval 27497 . . . . . . . . . . . . . . 15 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝑀𝑦) = (𝑥𝐺(-1( ·𝑠OLD𝑈)𝑦)))
18173expa 1265 . . . . . . . . . . . . . 14 (((𝑈 ∈ NrmCVec ∧ 𝑥𝑋) ∧ 𝑦𝑋) → (𝑥𝑀𝑦) = (𝑥𝐺(-1( ·𝑠OLD𝑈)𝑦)))
1918fveq2d 6195 . . . . . . . . . . . . 13 (((𝑈 ∈ NrmCVec ∧ 𝑥𝑋) ∧ 𝑦𝑋) → (𝑁‘(𝑥𝑀𝑦)) = (𝑁‘(𝑥𝐺(-1( ·𝑠OLD𝑈)𝑦))))
2019oveq1d 6665 . . . . . . . . . . . 12 (((𝑈 ∈ NrmCVec ∧ 𝑥𝑋) ∧ 𝑦𝑋) → ((𝑁‘(𝑥𝑀𝑦))↑2) = ((𝑁‘(𝑥𝐺(-1( ·𝑠OLD𝑈)𝑦)))↑2))
2120oveq2d 6666 . . . . . . . . . . 11 (((𝑈 ∈ NrmCVec ∧ 𝑥𝑋) ∧ 𝑦𝑋) → (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝑀𝑦))↑2)) = (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1( ·𝑠OLD𝑈)𝑦)))↑2)))
2221eqeq1d 2624 . . . . . . . . . 10 (((𝑈 ∈ NrmCVec ∧ 𝑥𝑋) ∧ 𝑦𝑋) → ((((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝑀𝑦))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))) ↔ (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1( ·𝑠OLD𝑈)𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2)))))
2322ralbidva 2985 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋) → (∀𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝑀𝑦))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))) ↔ ∀𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1( ·𝑠OLD𝑈)𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2)))))
2423ralbidva 2985 . . . . . . . 8 (𝑈 ∈ NrmCVec → (∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝑀𝑦))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))) ↔ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1( ·𝑠OLD𝑈)𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2)))))
2524pm5.32i 669 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝑀𝑦))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2)))) ↔ (𝑈 ∈ NrmCVec ∧ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1( ·𝑠OLD𝑈)𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2)))))
26 eleq1 2689 . . . . . . . 8 (𝑈 = ⟨⟨𝐺, ( ·𝑠OLD𝑈)⟩, 𝑁⟩ → (𝑈 ∈ NrmCVec ↔ ⟨⟨𝐺, ( ·𝑠OLD𝑈)⟩, 𝑁⟩ ∈ NrmCVec))
2726anbi1d 741 . . . . . . 7 (𝑈 = ⟨⟨𝐺, ( ·𝑠OLD𝑈)⟩, 𝑁⟩ → ((𝑈 ∈ NrmCVec ∧ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1( ·𝑠OLD𝑈)𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2)))) ↔ (⟨⟨𝐺, ( ·𝑠OLD𝑈)⟩, 𝑁⟩ ∈ NrmCVec ∧ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1( ·𝑠OLD𝑈)𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))))))
2825, 27syl5rbb 273 . . . . . 6 (𝑈 = ⟨⟨𝐺, ( ·𝑠OLD𝑈)⟩, 𝑁⟩ → ((⟨⟨𝐺, ( ·𝑠OLD𝑈)⟩, 𝑁⟩ ∈ NrmCVec ∧ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1( ·𝑠OLD𝑈)𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2)))) ↔ (𝑈 ∈ NrmCVec ∧ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝑀𝑦))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))))))
2915, 28syl5bb 272 . . . . 5 (𝑈 = ⟨⟨𝐺, ( ·𝑠OLD𝑈)⟩, 𝑁⟩ → (⟨⟨𝐺, ( ·𝑠OLD𝑈)⟩, 𝑁⟩ ∈ CPreHilOLD ↔ (𝑈 ∈ NrmCVec ∧ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝑀𝑦))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))))))
306, 29bitrd 268 . . . 4 (𝑈 = ⟨⟨𝐺, ( ·𝑠OLD𝑈)⟩, 𝑁⟩ → (𝑈 ∈ CPreHilOLD ↔ (𝑈 ∈ NrmCVec ∧ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝑀𝑦))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))))))
315, 30syl 17 . . 3 (𝑈 ∈ NrmCVec → (𝑈 ∈ CPreHilOLD ↔ (𝑈 ∈ NrmCVec ∧ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝑀𝑦))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))))))
3231bianabs 924 . 2 (𝑈 ∈ NrmCVec → (𝑈 ∈ CPreHilOLD ↔ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝑀𝑦))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2)))))
331, 32biadan2 674 1 (𝑈 ∈ CPreHilOLD ↔ (𝑈 ∈ NrmCVec ∧ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝑀𝑦))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2)))))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200  cop 4183  cfv 5888  (class class class)co 6650  1c1 9937   + caddc 9939   · cmul 9941  -cneg 10267  2c2 11070  cexp 12860  NrmCVeccnv 27439   +𝑣 cpv 27440  BaseSetcba 27441   ·𝑠OLD cns 27442  𝑣 cnsb 27444  normCVcnmcv 27445  CPreHilOLDccphlo 27667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-ltxr 10079  df-sub 10268  df-neg 10269  df-grpo 27347  df-gid 27348  df-ginv 27349  df-gdiv 27350  df-ablo 27399  df-vc 27414  df-nv 27447  df-va 27450  df-ba 27451  df-sm 27452  df-0v 27453  df-vs 27454  df-nmcv 27455  df-ph 27668
This theorem is referenced by:  phpar2  27678  sspph  27710
  Copyright terms: Public domain W3C validator