MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itunitc1 Structured version   Visualization version   Unicode version

Theorem itunitc1 9242
Description: Each union iterate is a member of the transitive closure. (Contributed by Stefan O'Rear, 11-Feb-2015.)
Hypothesis
Ref Expression
ituni.u  |-  U  =  ( x  e.  _V  |->  ( rec ( ( y  e.  _V  |->  U. y
) ,  x )  |`  om ) )
Assertion
Ref Expression
itunitc1  |-  ( ( U `  A ) `
 B )  C_  ( TC `  A )
Distinct variable groups:    x, A, y    x, B, y
Allowed substitution hints:    U( x, y)

Proof of Theorem itunitc1
Dummy variables  a 
b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6191 . . . . 5  |-  ( a  =  A  ->  ( U `  a )  =  ( U `  A ) )
21fveq1d 6193 . . . 4  |-  ( a  =  A  ->  (
( U `  a
) `  B )  =  ( ( U `
 A ) `  B ) )
3 fveq2 6191 . . . 4  |-  ( a  =  A  ->  ( TC `  a )  =  ( TC `  A
) )
42, 3sseq12d 3634 . . 3  |-  ( a  =  A  ->  (
( ( U `  a ) `  B
)  C_  ( TC `  a )  <->  ( ( U `  A ) `  B )  C_  ( TC `  A ) ) )
5 fveq2 6191 . . . . . 6  |-  ( b  =  (/)  ->  ( ( U `  a ) `
 b )  =  ( ( U `  a ) `  (/) ) )
65sseq1d 3632 . . . . 5  |-  ( b  =  (/)  ->  ( ( ( U `  a
) `  b )  C_  ( TC `  a
)  <->  ( ( U `
 a ) `  (/) )  C_  ( TC `  a ) ) )
7 fveq2 6191 . . . . . 6  |-  ( b  =  c  ->  (
( U `  a
) `  b )  =  ( ( U `
 a ) `  c ) )
87sseq1d 3632 . . . . 5  |-  ( b  =  c  ->  (
( ( U `  a ) `  b
)  C_  ( TC `  a )  <->  ( ( U `  a ) `  c )  C_  ( TC `  a ) ) )
9 fveq2 6191 . . . . . 6  |-  ( b  =  suc  c  -> 
( ( U `  a ) `  b
)  =  ( ( U `  a ) `
 suc  c )
)
109sseq1d 3632 . . . . 5  |-  ( b  =  suc  c  -> 
( ( ( U `
 a ) `  b )  C_  ( TC `  a )  <->  ( ( U `  a ) `  suc  c )  C_  ( TC `  a ) ) )
11 fveq2 6191 . . . . . 6  |-  ( b  =  B  ->  (
( U `  a
) `  b )  =  ( ( U `
 a ) `  B ) )
1211sseq1d 3632 . . . . 5  |-  ( b  =  B  ->  (
( ( U `  a ) `  b
)  C_  ( TC `  a )  <->  ( ( U `  a ) `  B )  C_  ( TC `  a ) ) )
13 vex 3203 . . . . . 6  |-  a  e. 
_V
14 ituni.u . . . . . . . 8  |-  U  =  ( x  e.  _V  |->  ( rec ( ( y  e.  _V  |->  U. y
) ,  x )  |`  om ) )
1514ituni0 9240 . . . . . . 7  |-  ( a  e.  _V  ->  (
( U `  a
) `  (/) )  =  a )
16 tcid 8615 . . . . . . 7  |-  ( a  e.  _V  ->  a  C_  ( TC `  a
) )
1715, 16eqsstrd 3639 . . . . . 6  |-  ( a  e.  _V  ->  (
( U `  a
) `  (/) )  C_  ( TC `  a ) )
1813, 17ax-mp 5 . . . . 5  |-  ( ( U `  a ) `
 (/) )  C_  ( TC `  a )
1914itunisuc 9241 . . . . . . 7  |-  ( ( U `  a ) `
 suc  c )  =  U. ( ( U `
 a ) `  c )
20 tctr 8616 . . . . . . . . . 10  |-  Tr  ( TC `  a )
21 pwtr 4921 . . . . . . . . . 10  |-  ( Tr  ( TC `  a
)  <->  Tr  ~P ( TC `  a ) )
2220, 21mpbi 220 . . . . . . . . 9  |-  Tr  ~P ( TC `  a )
23 trss 4761 . . . . . . . . 9  |-  ( Tr 
~P ( TC `  a )  ->  (
( ( U `  a ) `  c
)  e.  ~P ( TC `  a )  -> 
( ( U `  a ) `  c
)  C_  ~P ( TC `  a ) ) )
2422, 23ax-mp 5 . . . . . . . 8  |-  ( ( ( U `  a
) `  c )  e.  ~P ( TC `  a )  ->  (
( U `  a
) `  c )  C_ 
~P ( TC `  a ) )
25 fvex 6201 . . . . . . . . 9  |-  ( ( U `  a ) `
 c )  e. 
_V
2625elpw 4164 . . . . . . . 8  |-  ( ( ( U `  a
) `  c )  e.  ~P ( TC `  a )  <->  ( ( U `  a ) `  c )  C_  ( TC `  a ) )
27 sspwuni 4611 . . . . . . . 8  |-  ( ( ( U `  a
) `  c )  C_ 
~P ( TC `  a )  <->  U. (
( U `  a
) `  c )  C_  ( TC `  a
) )
2824, 26, 273imtr3i 280 . . . . . . 7  |-  ( ( ( U `  a
) `  c )  C_  ( TC `  a
)  ->  U. (
( U `  a
) `  c )  C_  ( TC `  a
) )
2919, 28syl5eqss 3649 . . . . . 6  |-  ( ( ( U `  a
) `  c )  C_  ( TC `  a
)  ->  ( ( U `  a ) `  suc  c )  C_  ( TC `  a ) )
3029a1i 11 . . . . 5  |-  ( c  e.  om  ->  (
( ( U `  a ) `  c
)  C_  ( TC `  a )  ->  (
( U `  a
) `  suc  c ) 
C_  ( TC `  a ) ) )
316, 8, 10, 12, 18, 30finds 7092 . . . 4  |-  ( B  e.  om  ->  (
( U `  a
) `  B )  C_  ( TC `  a
) )
3214itunifn 9239 . . . . . . . 8  |-  ( a  e.  _V  ->  ( U `  a )  Fn  om )
33 fndm 5990 . . . . . . . 8  |-  ( ( U `  a )  Fn  om  ->  dom  ( U `  a )  =  om )
3413, 32, 33mp2b 10 . . . . . . 7  |-  dom  ( U `  a )  =  om
3534eleq2i 2693 . . . . . 6  |-  ( B  e.  dom  ( U `
 a )  <->  B  e.  om )
36 ndmfv 6218 . . . . . 6  |-  ( -.  B  e.  dom  ( U `  a )  ->  ( ( U `  a ) `  B
)  =  (/) )
3735, 36sylnbir 321 . . . . 5  |-  ( -.  B  e.  om  ->  ( ( U `  a
) `  B )  =  (/) )
38 0ss 3972 . . . . 5  |-  (/)  C_  ( TC `  a )
3937, 38syl6eqss 3655 . . . 4  |-  ( -.  B  e.  om  ->  ( ( U `  a
) `  B )  C_  ( TC `  a
) )
4031, 39pm2.61i 176 . . 3  |-  ( ( U `  a ) `
 B )  C_  ( TC `  a )
414, 40vtoclg 3266 . 2  |-  ( A  e.  _V  ->  (
( U `  A
) `  B )  C_  ( TC `  A
) )
42 fvprc 6185 . . . . 5  |-  ( -.  A  e.  _V  ->  ( U `  A )  =  (/) )
4342fveq1d 6193 . . . 4  |-  ( -.  A  e.  _V  ->  ( ( U `  A
) `  B )  =  ( (/) `  B
) )
44 0fv 6227 . . . 4  |-  ( (/) `  B )  =  (/)
4543, 44syl6eq 2672 . . 3  |-  ( -.  A  e.  _V  ->  ( ( U `  A
) `  B )  =  (/) )
46 0ss 3972 . . 3  |-  (/)  C_  ( TC `  A )
4745, 46syl6eqss 3655 . 2  |-  ( -.  A  e.  _V  ->  ( ( U `  A
) `  B )  C_  ( TC `  A
) )
4841, 47pm2.61i 176 1  |-  ( ( U `  A ) `
 B )  C_  ( TC `  A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1483    e. wcel 1990   _Vcvv 3200    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   U.cuni 4436    |-> cmpt 4729   Tr wtr 4752   dom cdm 5114    |` cres 5116   suc csuc 5725    Fn wfn 5883   ` cfv 5888   omcom 7065   reccrdg 7505   TCctc 8612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-tc 8613
This theorem is referenced by:  itunitc  9243
  Copyright terms: Public domain W3C validator