| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > itunitc1 | Structured version Visualization version Unicode version | ||
| Description: Each union iterate is a member of the transitive closure. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
| Ref | Expression |
|---|---|
| ituni.u |
|
| Ref | Expression |
|---|---|
| itunitc1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6191 |
. . . . 5
| |
| 2 | 1 | fveq1d 6193 |
. . . 4
|
| 3 | fveq2 6191 |
. . . 4
| |
| 4 | 2, 3 | sseq12d 3634 |
. . 3
|
| 5 | fveq2 6191 |
. . . . . 6
| |
| 6 | 5 | sseq1d 3632 |
. . . . 5
|
| 7 | fveq2 6191 |
. . . . . 6
| |
| 8 | 7 | sseq1d 3632 |
. . . . 5
|
| 9 | fveq2 6191 |
. . . . . 6
| |
| 10 | 9 | sseq1d 3632 |
. . . . 5
|
| 11 | fveq2 6191 |
. . . . . 6
| |
| 12 | 11 | sseq1d 3632 |
. . . . 5
|
| 13 | vex 3203 |
. . . . . 6
| |
| 14 | ituni.u |
. . . . . . . 8
| |
| 15 | 14 | ituni0 9240 |
. . . . . . 7
|
| 16 | tcid 8615 |
. . . . . . 7
| |
| 17 | 15, 16 | eqsstrd 3639 |
. . . . . 6
|
| 18 | 13, 17 | ax-mp 5 |
. . . . 5
|
| 19 | 14 | itunisuc 9241 |
. . . . . . 7
|
| 20 | tctr 8616 |
. . . . . . . . . 10
| |
| 21 | pwtr 4921 |
. . . . . . . . . 10
| |
| 22 | 20, 21 | mpbi 220 |
. . . . . . . . 9
|
| 23 | trss 4761 |
. . . . . . . . 9
| |
| 24 | 22, 23 | ax-mp 5 |
. . . . . . . 8
|
| 25 | fvex 6201 |
. . . . . . . . 9
| |
| 26 | 25 | elpw 4164 |
. . . . . . . 8
|
| 27 | sspwuni 4611 |
. . . . . . . 8
| |
| 28 | 24, 26, 27 | 3imtr3i 280 |
. . . . . . 7
|
| 29 | 19, 28 | syl5eqss 3649 |
. . . . . 6
|
| 30 | 29 | a1i 11 |
. . . . 5
|
| 31 | 6, 8, 10, 12, 18, 30 | finds 7092 |
. . . 4
|
| 32 | 14 | itunifn 9239 |
. . . . . . . 8
|
| 33 | fndm 5990 |
. . . . . . . 8
| |
| 34 | 13, 32, 33 | mp2b 10 |
. . . . . . 7
|
| 35 | 34 | eleq2i 2693 |
. . . . . 6
|
| 36 | ndmfv 6218 |
. . . . . 6
| |
| 37 | 35, 36 | sylnbir 321 |
. . . . 5
|
| 38 | 0ss 3972 |
. . . . 5
| |
| 39 | 37, 38 | syl6eqss 3655 |
. . . 4
|
| 40 | 31, 39 | pm2.61i 176 |
. . 3
|
| 41 | 4, 40 | vtoclg 3266 |
. 2
|
| 42 | fvprc 6185 |
. . . . 5
| |
| 43 | 42 | fveq1d 6193 |
. . . 4
|
| 44 | 0fv 6227 |
. . . 4
| |
| 45 | 43, 44 | syl6eq 2672 |
. . 3
|
| 46 | 0ss 3972 |
. . 3
| |
| 47 | 45, 46 | syl6eqss 3655 |
. 2
|
| 48 | 41, 47 | pm2.61i 176 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-tc 8613 |
| This theorem is referenced by: itunitc 9243 |
| Copyright terms: Public domain | W3C validator |