![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > logdmnrp | Structured version Visualization version GIF version |
Description: A number in the continuous domain of log is not a strictly negative number. (Contributed by Mario Carneiro, 18-Feb-2015.) |
Ref | Expression |
---|---|
logcn.d | ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) |
Ref | Expression |
---|---|
logdmnrp | ⊢ (𝐴 ∈ 𝐷 → ¬ -𝐴 ∈ ℝ+) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifn 3733 | . . 3 ⊢ (𝐴 ∈ (ℂ ∖ (-∞(,]0)) → ¬ 𝐴 ∈ (-∞(,]0)) | |
2 | logcn.d | . . 3 ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) | |
3 | 1, 2 | eleq2s 2719 | . 2 ⊢ (𝐴 ∈ 𝐷 → ¬ 𝐴 ∈ (-∞(,]0)) |
4 | rpre 11839 | . . . . 5 ⊢ (-𝐴 ∈ ℝ+ → -𝐴 ∈ ℝ) | |
5 | 2 | ellogdm 24385 | . . . . . . 7 ⊢ (𝐴 ∈ 𝐷 ↔ (𝐴 ∈ ℂ ∧ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ+))) |
6 | 5 | simplbi 476 | . . . . . 6 ⊢ (𝐴 ∈ 𝐷 → 𝐴 ∈ ℂ) |
7 | negreb 10346 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (-𝐴 ∈ ℝ ↔ 𝐴 ∈ ℝ)) | |
8 | 6, 7 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ 𝐷 → (-𝐴 ∈ ℝ ↔ 𝐴 ∈ ℝ)) |
9 | 4, 8 | syl5ib 234 | . . . 4 ⊢ (𝐴 ∈ 𝐷 → (-𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ)) |
10 | 9 | imp 445 | . . 3 ⊢ ((𝐴 ∈ 𝐷 ∧ -𝐴 ∈ ℝ+) → 𝐴 ∈ ℝ) |
11 | mnflt 11957 | . . . 4 ⊢ (𝐴 ∈ ℝ → -∞ < 𝐴) | |
12 | 10, 11 | syl 17 | . . 3 ⊢ ((𝐴 ∈ 𝐷 ∧ -𝐴 ∈ ℝ+) → -∞ < 𝐴) |
13 | rpgt0 11844 | . . . . . 6 ⊢ (-𝐴 ∈ ℝ+ → 0 < -𝐴) | |
14 | 13 | adantl 482 | . . . . 5 ⊢ ((𝐴 ∈ 𝐷 ∧ -𝐴 ∈ ℝ+) → 0 < -𝐴) |
15 | 10 | lt0neg1d 10597 | . . . . 5 ⊢ ((𝐴 ∈ 𝐷 ∧ -𝐴 ∈ ℝ+) → (𝐴 < 0 ↔ 0 < -𝐴)) |
16 | 14, 15 | mpbird 247 | . . . 4 ⊢ ((𝐴 ∈ 𝐷 ∧ -𝐴 ∈ ℝ+) → 𝐴 < 0) |
17 | 0re 10040 | . . . . 5 ⊢ 0 ∈ ℝ | |
18 | ltle 10126 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 < 0 → 𝐴 ≤ 0)) | |
19 | 10, 17, 18 | sylancl 694 | . . . 4 ⊢ ((𝐴 ∈ 𝐷 ∧ -𝐴 ∈ ℝ+) → (𝐴 < 0 → 𝐴 ≤ 0)) |
20 | 16, 19 | mpd 15 | . . 3 ⊢ ((𝐴 ∈ 𝐷 ∧ -𝐴 ∈ ℝ+) → 𝐴 ≤ 0) |
21 | mnfxr 10096 | . . . 4 ⊢ -∞ ∈ ℝ* | |
22 | elioc2 12236 | . . . 4 ⊢ ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ) → (𝐴 ∈ (-∞(,]0) ↔ (𝐴 ∈ ℝ ∧ -∞ < 𝐴 ∧ 𝐴 ≤ 0))) | |
23 | 21, 17, 22 | mp2an 708 | . . 3 ⊢ (𝐴 ∈ (-∞(,]0) ↔ (𝐴 ∈ ℝ ∧ -∞ < 𝐴 ∧ 𝐴 ≤ 0)) |
24 | 10, 12, 20, 23 | syl3anbrc 1246 | . 2 ⊢ ((𝐴 ∈ 𝐷 ∧ -𝐴 ∈ ℝ+) → 𝐴 ∈ (-∞(,]0)) |
25 | 3, 24 | mtand 691 | 1 ⊢ (𝐴 ∈ 𝐷 → ¬ -𝐴 ∈ ℝ+) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ∖ cdif 3571 class class class wbr 4653 (class class class)co 6650 ℂcc 9934 ℝcr 9935 0cc0 9936 -∞cmnf 10072 ℝ*cxr 10073 < clt 10074 ≤ cle 10075 -cneg 10267 ℝ+crp 11832 (,]cioc 12176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-rp 11833 df-ioc 12180 |
This theorem is referenced by: dvloglem 24394 logf1o2 24396 |
Copyright terms: Public domain | W3C validator |