MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvloglem Structured version   Visualization version   GIF version

Theorem dvloglem 24394
Description: Lemma for dvlog 24397. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypothesis
Ref Expression
logcn.d 𝐷 = (ℂ ∖ (-∞(,]0))
Assertion
Ref Expression
dvloglem (log “ 𝐷) ∈ (TopOpen‘ℂfld)

Proof of Theorem dvloglem
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 logf1o 24311 . . . . . 6 log:(ℂ ∖ {0})–1-1-onto→ran log
2 f1ofun 6139 . . . . . 6 (log:(ℂ ∖ {0})–1-1-onto→ran log → Fun log)
31, 2ax-mp 5 . . . . 5 Fun log
4 logcn.d . . . . . . 7 𝐷 = (ℂ ∖ (-∞(,]0))
54logdmss 24388 . . . . . 6 𝐷 ⊆ (ℂ ∖ {0})
6 f1odm 6141 . . . . . . 7 (log:(ℂ ∖ {0})–1-1-onto→ran log → dom log = (ℂ ∖ {0}))
71, 6ax-mp 5 . . . . . 6 dom log = (ℂ ∖ {0})
85, 7sseqtr4i 3638 . . . . 5 𝐷 ⊆ dom log
9 funimass4 6247 . . . . 5 ((Fun log ∧ 𝐷 ⊆ dom log) → ((log “ 𝐷) ⊆ (ℑ “ (-π(,)π)) ↔ ∀𝑥𝐷 (log‘𝑥) ∈ (ℑ “ (-π(,)π))))
103, 8, 9mp2an 708 . . . 4 ((log “ 𝐷) ⊆ (ℑ “ (-π(,)π)) ↔ ∀𝑥𝐷 (log‘𝑥) ∈ (ℑ “ (-π(,)π)))
114ellogdm 24385 . . . . . . 7 (𝑥𝐷 ↔ (𝑥 ∈ ℂ ∧ (𝑥 ∈ ℝ → 𝑥 ∈ ℝ+)))
1211simplbi 476 . . . . . 6 (𝑥𝐷𝑥 ∈ ℂ)
134logdmn0 24386 . . . . . 6 (𝑥𝐷𝑥 ≠ 0)
1412, 13logcld 24317 . . . . 5 (𝑥𝐷 → (log‘𝑥) ∈ ℂ)
1514imcld 13935 . . . . . 6 (𝑥𝐷 → (ℑ‘(log‘𝑥)) ∈ ℝ)
1612, 13logimcld 24318 . . . . . . 7 (𝑥𝐷 → (-π < (ℑ‘(log‘𝑥)) ∧ (ℑ‘(log‘𝑥)) ≤ π))
1716simpld 475 . . . . . 6 (𝑥𝐷 → -π < (ℑ‘(log‘𝑥)))
184logdmnrp 24387 . . . . . . . . 9 (𝑥𝐷 → ¬ -𝑥 ∈ ℝ+)
19 lognegb 24336 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → (-𝑥 ∈ ℝ+ ↔ (ℑ‘(log‘𝑥)) = π))
2012, 13, 19syl2anc 693 . . . . . . . . . 10 (𝑥𝐷 → (-𝑥 ∈ ℝ+ ↔ (ℑ‘(log‘𝑥)) = π))
2120necon3bbid 2831 . . . . . . . . 9 (𝑥𝐷 → (¬ -𝑥 ∈ ℝ+ ↔ (ℑ‘(log‘𝑥)) ≠ π))
2218, 21mpbid 222 . . . . . . . 8 (𝑥𝐷 → (ℑ‘(log‘𝑥)) ≠ π)
2322necomd 2849 . . . . . . 7 (𝑥𝐷 → π ≠ (ℑ‘(log‘𝑥)))
24 pire 24210 . . . . . . . . 9 π ∈ ℝ
2524a1i 11 . . . . . . . 8 (𝑥𝐷 → π ∈ ℝ)
2616simprd 479 . . . . . . . 8 (𝑥𝐷 → (ℑ‘(log‘𝑥)) ≤ π)
2715, 25, 26leltned 10190 . . . . . . 7 (𝑥𝐷 → ((ℑ‘(log‘𝑥)) < π ↔ π ≠ (ℑ‘(log‘𝑥))))
2823, 27mpbird 247 . . . . . 6 (𝑥𝐷 → (ℑ‘(log‘𝑥)) < π)
2924renegcli 10342 . . . . . . . 8 -π ∈ ℝ
3029rexri 10097 . . . . . . 7 -π ∈ ℝ*
3124rexri 10097 . . . . . . 7 π ∈ ℝ*
32 elioo2 12216 . . . . . . 7 ((-π ∈ ℝ* ∧ π ∈ ℝ*) → ((ℑ‘(log‘𝑥)) ∈ (-π(,)π) ↔ ((ℑ‘(log‘𝑥)) ∈ ℝ ∧ -π < (ℑ‘(log‘𝑥)) ∧ (ℑ‘(log‘𝑥)) < π)))
3330, 31, 32mp2an 708 . . . . . 6 ((ℑ‘(log‘𝑥)) ∈ (-π(,)π) ↔ ((ℑ‘(log‘𝑥)) ∈ ℝ ∧ -π < (ℑ‘(log‘𝑥)) ∧ (ℑ‘(log‘𝑥)) < π))
3415, 17, 28, 33syl3anbrc 1246 . . . . 5 (𝑥𝐷 → (ℑ‘(log‘𝑥)) ∈ (-π(,)π))
35 imf 13853 . . . . . 6 ℑ:ℂ⟶ℝ
36 ffn 6045 . . . . . 6 (ℑ:ℂ⟶ℝ → ℑ Fn ℂ)
37 elpreima 6337 . . . . . 6 (ℑ Fn ℂ → ((log‘𝑥) ∈ (ℑ “ (-π(,)π)) ↔ ((log‘𝑥) ∈ ℂ ∧ (ℑ‘(log‘𝑥)) ∈ (-π(,)π))))
3835, 36, 37mp2b 10 . . . . 5 ((log‘𝑥) ∈ (ℑ “ (-π(,)π)) ↔ ((log‘𝑥) ∈ ℂ ∧ (ℑ‘(log‘𝑥)) ∈ (-π(,)π)))
3914, 34, 38sylanbrc 698 . . . 4 (𝑥𝐷 → (log‘𝑥) ∈ (ℑ “ (-π(,)π)))
4010, 39mprgbir 2927 . . 3 (log “ 𝐷) ⊆ (ℑ “ (-π(,)π))
41 df-ioo 12179 . . . . . . . . . 10 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
42 df-ioc 12180 . . . . . . . . . 10 (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)})
43 idd 24 . . . . . . . . . 10 ((-π ∈ ℝ*𝑤 ∈ ℝ*) → (-π < 𝑤 → -π < 𝑤))
44 xrltle 11982 . . . . . . . . . 10 ((𝑤 ∈ ℝ* ∧ π ∈ ℝ*) → (𝑤 < π → 𝑤 ≤ π))
4541, 42, 43, 44ixxssixx 12189 . . . . . . . . 9 (-π(,)π) ⊆ (-π(,]π)
46 imass2 5501 . . . . . . . . 9 ((-π(,)π) ⊆ (-π(,]π) → (ℑ “ (-π(,)π)) ⊆ (ℑ “ (-π(,]π)))
4745, 46ax-mp 5 . . . . . . . 8 (ℑ “ (-π(,)π)) ⊆ (ℑ “ (-π(,]π))
48 logrn 24305 . . . . . . . 8 ran log = (ℑ “ (-π(,]π))
4947, 48sseqtr4i 3638 . . . . . . 7 (ℑ “ (-π(,)π)) ⊆ ran log
5049sseli 3599 . . . . . 6 (𝑥 ∈ (ℑ “ (-π(,)π)) → 𝑥 ∈ ran log)
51 logef 24328 . . . . . 6 (𝑥 ∈ ran log → (log‘(exp‘𝑥)) = 𝑥)
5250, 51syl 17 . . . . 5 (𝑥 ∈ (ℑ “ (-π(,)π)) → (log‘(exp‘𝑥)) = 𝑥)
53 elpreima 6337 . . . . . . . . . 10 (ℑ Fn ℂ → (𝑥 ∈ (ℑ “ (-π(,)π)) ↔ (𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π))))
5435, 36, 53mp2b 10 . . . . . . . . 9 (𝑥 ∈ (ℑ “ (-π(,)π)) ↔ (𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)))
55 efcl 14813 . . . . . . . . . 10 (𝑥 ∈ ℂ → (exp‘𝑥) ∈ ℂ)
5655adantr 481 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) → (exp‘𝑥) ∈ ℂ)
5754, 56sylbi 207 . . . . . . . 8 (𝑥 ∈ (ℑ “ (-π(,)π)) → (exp‘𝑥) ∈ ℂ)
5854simplbi 476 . . . . . . . . . . 11 (𝑥 ∈ (ℑ “ (-π(,)π)) → 𝑥 ∈ ℂ)
5958imcld 13935 . . . . . . . . . 10 (𝑥 ∈ (ℑ “ (-π(,)π)) → (ℑ‘𝑥) ∈ ℝ)
6054simprbi 480 . . . . . . . . . . . 12 (𝑥 ∈ (ℑ “ (-π(,)π)) → (ℑ‘𝑥) ∈ (-π(,)π))
61 eliooord 12233 . . . . . . . . . . . 12 ((ℑ‘𝑥) ∈ (-π(,)π) → (-π < (ℑ‘𝑥) ∧ (ℑ‘𝑥) < π))
6260, 61syl 17 . . . . . . . . . . 11 (𝑥 ∈ (ℑ “ (-π(,)π)) → (-π < (ℑ‘𝑥) ∧ (ℑ‘𝑥) < π))
6362simprd 479 . . . . . . . . . 10 (𝑥 ∈ (ℑ “ (-π(,)π)) → (ℑ‘𝑥) < π)
6459, 63ltned 10173 . . . . . . . . 9 (𝑥 ∈ (ℑ “ (-π(,)π)) → (ℑ‘𝑥) ≠ π)
6552adantr 481 . . . . . . . . . . . . 13 ((𝑥 ∈ (ℑ “ (-π(,)π)) ∧ (exp‘𝑥) ∈ (-∞(,]0)) → (log‘(exp‘𝑥)) = 𝑥)
6665fveq2d 6195 . . . . . . . . . . . 12 ((𝑥 ∈ (ℑ “ (-π(,)π)) ∧ (exp‘𝑥) ∈ (-∞(,]0)) → (ℑ‘(log‘(exp‘𝑥))) = (ℑ‘𝑥))
67 simpr 477 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ (ℑ “ (-π(,)π)) ∧ (exp‘𝑥) ∈ (-∞(,]0)) → (exp‘𝑥) ∈ (-∞(,]0))
68 mnfxr 10096 . . . . . . . . . . . . . . . . . 18 -∞ ∈ ℝ*
69 0re 10040 . . . . . . . . . . . . . . . . . 18 0 ∈ ℝ
70 elioc2 12236 . . . . . . . . . . . . . . . . . 18 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ) → ((exp‘𝑥) ∈ (-∞(,]0) ↔ ((exp‘𝑥) ∈ ℝ ∧ -∞ < (exp‘𝑥) ∧ (exp‘𝑥) ≤ 0)))
7168, 69, 70mp2an 708 . . . . . . . . . . . . . . . . 17 ((exp‘𝑥) ∈ (-∞(,]0) ↔ ((exp‘𝑥) ∈ ℝ ∧ -∞ < (exp‘𝑥) ∧ (exp‘𝑥) ≤ 0))
7267, 71sylib 208 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (ℑ “ (-π(,)π)) ∧ (exp‘𝑥) ∈ (-∞(,]0)) → ((exp‘𝑥) ∈ ℝ ∧ -∞ < (exp‘𝑥) ∧ (exp‘𝑥) ≤ 0))
7372simp1d 1073 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (ℑ “ (-π(,)π)) ∧ (exp‘𝑥) ∈ (-∞(,]0)) → (exp‘𝑥) ∈ ℝ)
7473renegcld 10457 . . . . . . . . . . . . . 14 ((𝑥 ∈ (ℑ “ (-π(,)π)) ∧ (exp‘𝑥) ∈ (-∞(,]0)) → -(exp‘𝑥) ∈ ℝ)
75 efne0 14827 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℂ → (exp‘𝑥) ≠ 0)
7658, 75syl 17 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (ℑ “ (-π(,)π)) → (exp‘𝑥) ≠ 0)
7776adantr 481 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ (ℑ “ (-π(,)π)) ∧ (exp‘𝑥) ∈ (-∞(,]0)) → (exp‘𝑥) ≠ 0)
7877necomd 2849 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (ℑ “ (-π(,)π)) ∧ (exp‘𝑥) ∈ (-∞(,]0)) → 0 ≠ (exp‘𝑥))
79 0red 10041 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ (ℑ “ (-π(,)π)) ∧ (exp‘𝑥) ∈ (-∞(,]0)) → 0 ∈ ℝ)
8072simp3d 1075 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ (ℑ “ (-π(,)π)) ∧ (exp‘𝑥) ∈ (-∞(,]0)) → (exp‘𝑥) ≤ 0)
8173, 79, 80leltned 10190 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (ℑ “ (-π(,)π)) ∧ (exp‘𝑥) ∈ (-∞(,]0)) → ((exp‘𝑥) < 0 ↔ 0 ≠ (exp‘𝑥)))
8278, 81mpbird 247 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (ℑ “ (-π(,)π)) ∧ (exp‘𝑥) ∈ (-∞(,]0)) → (exp‘𝑥) < 0)
8373lt0neg1d 10597 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (ℑ “ (-π(,)π)) ∧ (exp‘𝑥) ∈ (-∞(,]0)) → ((exp‘𝑥) < 0 ↔ 0 < -(exp‘𝑥)))
8482, 83mpbid 222 . . . . . . . . . . . . . 14 ((𝑥 ∈ (ℑ “ (-π(,)π)) ∧ (exp‘𝑥) ∈ (-∞(,]0)) → 0 < -(exp‘𝑥))
8574, 84elrpd 11869 . . . . . . . . . . . . 13 ((𝑥 ∈ (ℑ “ (-π(,)π)) ∧ (exp‘𝑥) ∈ (-∞(,]0)) → -(exp‘𝑥) ∈ ℝ+)
86 lognegb 24336 . . . . . . . . . . . . . . 15 (((exp‘𝑥) ∈ ℂ ∧ (exp‘𝑥) ≠ 0) → (-(exp‘𝑥) ∈ ℝ+ ↔ (ℑ‘(log‘(exp‘𝑥))) = π))
8757, 76, 86syl2anc 693 . . . . . . . . . . . . . 14 (𝑥 ∈ (ℑ “ (-π(,)π)) → (-(exp‘𝑥) ∈ ℝ+ ↔ (ℑ‘(log‘(exp‘𝑥))) = π))
8887adantr 481 . . . . . . . . . . . . 13 ((𝑥 ∈ (ℑ “ (-π(,)π)) ∧ (exp‘𝑥) ∈ (-∞(,]0)) → (-(exp‘𝑥) ∈ ℝ+ ↔ (ℑ‘(log‘(exp‘𝑥))) = π))
8985, 88mpbid 222 . . . . . . . . . . . 12 ((𝑥 ∈ (ℑ “ (-π(,)π)) ∧ (exp‘𝑥) ∈ (-∞(,]0)) → (ℑ‘(log‘(exp‘𝑥))) = π)
9066, 89eqtr3d 2658 . . . . . . . . . . 11 ((𝑥 ∈ (ℑ “ (-π(,)π)) ∧ (exp‘𝑥) ∈ (-∞(,]0)) → (ℑ‘𝑥) = π)
9190ex 450 . . . . . . . . . 10 (𝑥 ∈ (ℑ “ (-π(,)π)) → ((exp‘𝑥) ∈ (-∞(,]0) → (ℑ‘𝑥) = π))
9291necon3ad 2807 . . . . . . . . 9 (𝑥 ∈ (ℑ “ (-π(,)π)) → ((ℑ‘𝑥) ≠ π → ¬ (exp‘𝑥) ∈ (-∞(,]0)))
9364, 92mpd 15 . . . . . . . 8 (𝑥 ∈ (ℑ “ (-π(,)π)) → ¬ (exp‘𝑥) ∈ (-∞(,]0))
9457, 93eldifd 3585 . . . . . . 7 (𝑥 ∈ (ℑ “ (-π(,)π)) → (exp‘𝑥) ∈ (ℂ ∖ (-∞(,]0)))
9594, 4syl6eleqr 2712 . . . . . 6 (𝑥 ∈ (ℑ “ (-π(,)π)) → (exp‘𝑥) ∈ 𝐷)
96 funfvima2 6493 . . . . . . 7 ((Fun log ∧ 𝐷 ⊆ dom log) → ((exp‘𝑥) ∈ 𝐷 → (log‘(exp‘𝑥)) ∈ (log “ 𝐷)))
973, 8, 96mp2an 708 . . . . . 6 ((exp‘𝑥) ∈ 𝐷 → (log‘(exp‘𝑥)) ∈ (log “ 𝐷))
9895, 97syl 17 . . . . 5 (𝑥 ∈ (ℑ “ (-π(,)π)) → (log‘(exp‘𝑥)) ∈ (log “ 𝐷))
9952, 98eqeltrrd 2702 . . . 4 (𝑥 ∈ (ℑ “ (-π(,)π)) → 𝑥 ∈ (log “ 𝐷))
10099ssriv 3607 . . 3 (ℑ “ (-π(,)π)) ⊆ (log “ 𝐷)
10140, 100eqssi 3619 . 2 (log “ 𝐷) = (ℑ “ (-π(,)π))
102 imcncf 22706 . . . 4 ℑ ∈ (ℂ–cn→ℝ)
103 ssid 3624 . . . . 5 ℂ ⊆ ℂ
104 ax-resscn 9993 . . . . 5 ℝ ⊆ ℂ
105 eqid 2622 . . . . . 6 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
106105cnfldtop 22587 . . . . . . . 8 (TopOpen‘ℂfld) ∈ Top
107105cnfldtopon 22586 . . . . . . . . . 10 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
108107toponunii 20721 . . . . . . . . 9 ℂ = (TopOpen‘ℂfld)
109108restid 16094 . . . . . . . 8 ((TopOpen‘ℂfld) ∈ Top → ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld))
110106, 109ax-mp 5 . . . . . . 7 ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld)
111110eqcomi 2631 . . . . . 6 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
112105tgioo2 22606 . . . . . 6 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
113105, 111, 112cncfcn 22712 . . . . 5 ((ℂ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (ℂ–cn→ℝ) = ((TopOpen‘ℂfld) Cn (topGen‘ran (,))))
114103, 104, 113mp2an 708 . . . 4 (ℂ–cn→ℝ) = ((TopOpen‘ℂfld) Cn (topGen‘ran (,)))
115102, 114eleqtri 2699 . . 3 ℑ ∈ ((TopOpen‘ℂfld) Cn (topGen‘ran (,)))
116 iooretop 22569 . . 3 (-π(,)π) ∈ (topGen‘ran (,))
117 cnima 21069 . . 3 ((ℑ ∈ ((TopOpen‘ℂfld) Cn (topGen‘ran (,))) ∧ (-π(,)π) ∈ (topGen‘ran (,))) → (ℑ “ (-π(,)π)) ∈ (TopOpen‘ℂfld))
118115, 116, 117mp2an 708 . 2 (ℑ “ (-π(,)π)) ∈ (TopOpen‘ℂfld)
119101, 118eqeltri 2697 1 (log “ 𝐷) ∈ (TopOpen‘ℂfld)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  cdif 3571  wss 3574  {csn 4177   class class class wbr 4653  ccnv 5113  dom cdm 5114  ran crn 5115  cima 5117  Fun wfun 5882   Fn wfn 5883  wf 5884  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  -∞cmnf 10072  *cxr 10073   < clt 10074  cle 10075  -cneg 10267  +crp 11832  (,)cioo 12175  (,]cioc 12176  cim 13838  expce 14792  πcpi 14797  t crest 16081  TopOpenctopn 16082  topGenctg 16098  fldccnfld 19746  Topctop 20698   Cn ccn 21028  cnccncf 22679  logclog 24301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303
This theorem is referenced by:  dvlog  24397
  Copyright terms: Public domain W3C validator