![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ltdiv23neg | Structured version Visualization version GIF version |
Description: Swap denominator with other side of 'less than', when both are negative. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
ltdiv23neg.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltdiv23neg.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
ltdiv23neg.3 | ⊢ (𝜑 → 𝐵 < 0) |
ltdiv23neg.4 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
ltdiv23neg.5 | ⊢ (𝜑 → 𝐶 < 0) |
Ref | Expression |
---|---|
ltdiv23neg | ⊢ (𝜑 → ((𝐴 / 𝐵) < 𝐶 ↔ (𝐴 / 𝐶) < 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltdiv23neg.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | ltdiv23neg.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | ltdiv23neg.3 | . . . . 5 ⊢ (𝜑 → 𝐵 < 0) | |
4 | 2, 3 | ltned 10173 | . . . 4 ⊢ (𝜑 → 𝐵 ≠ 0) |
5 | 1, 2, 4 | redivcld 10853 | . . 3 ⊢ (𝜑 → (𝐴 / 𝐵) ∈ ℝ) |
6 | ltdiv23neg.4 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
7 | 5, 6, 2, 3 | ltmulneg 39615 | . 2 ⊢ (𝜑 → ((𝐴 / 𝐵) < 𝐶 ↔ (𝐶 · 𝐵) < ((𝐴 / 𝐵) · 𝐵))) |
8 | recn 10026 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
9 | 1, 8 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
10 | recn 10026 | . . . . 5 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℂ) | |
11 | 2, 10 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
12 | 9, 11, 4 | divcan1d 10802 | . . 3 ⊢ (𝜑 → ((𝐴 / 𝐵) · 𝐵) = 𝐴) |
13 | 12 | breq2d 4665 | . 2 ⊢ (𝜑 → ((𝐶 · 𝐵) < ((𝐴 / 𝐵) · 𝐵) ↔ (𝐶 · 𝐵) < 𝐴)) |
14 | remulcl 10021 | . . . . 5 ⊢ ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 · 𝐵) ∈ ℝ) | |
15 | 6, 2, 14 | syl2anc 693 | . . . 4 ⊢ (𝜑 → (𝐶 · 𝐵) ∈ ℝ) |
16 | ltdiv23neg.5 | . . . . . 6 ⊢ (𝜑 → 𝐶 < 0) | |
17 | 6, 16 | ltned 10173 | . . . . 5 ⊢ (𝜑 → 𝐶 ≠ 0) |
18 | 6, 17 | rereccld 10852 | . . . 4 ⊢ (𝜑 → (1 / 𝐶) ∈ ℝ) |
19 | 6, 16 | reclt0d 39607 | . . . 4 ⊢ (𝜑 → (1 / 𝐶) < 0) |
20 | 15, 1, 18, 19 | ltmulneg 39615 | . . 3 ⊢ (𝜑 → ((𝐶 · 𝐵) < 𝐴 ↔ (𝐴 · (1 / 𝐶)) < ((𝐶 · 𝐵) · (1 / 𝐶)))) |
21 | recn 10026 | . . . . . . 7 ⊢ (𝐶 ∈ ℝ → 𝐶 ∈ ℂ) | |
22 | 6, 21 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
23 | 9, 22, 17 | divrecd 10804 | . . . . 5 ⊢ (𝜑 → (𝐴 / 𝐶) = (𝐴 · (1 / 𝐶))) |
24 | 23 | eqcomd 2628 | . . . 4 ⊢ (𝜑 → (𝐴 · (1 / 𝐶)) = (𝐴 / 𝐶)) |
25 | 22, 11 | mulcld 10060 | . . . . . 6 ⊢ (𝜑 → (𝐶 · 𝐵) ∈ ℂ) |
26 | 25, 22, 17 | divrecd 10804 | . . . . 5 ⊢ (𝜑 → ((𝐶 · 𝐵) / 𝐶) = ((𝐶 · 𝐵) · (1 / 𝐶))) |
27 | divcan3 10711 | . . . . . . 7 ⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → ((𝐶 · 𝐵) / 𝐶) = 𝐵) | |
28 | 27 | 3expb 1266 | . . . . . 6 ⊢ ((𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐶 · 𝐵) / 𝐶) = 𝐵) |
29 | 11, 22, 17, 28 | syl12anc 1324 | . . . . 5 ⊢ (𝜑 → ((𝐶 · 𝐵) / 𝐶) = 𝐵) |
30 | 26, 29 | eqtr3d 2658 | . . . 4 ⊢ (𝜑 → ((𝐶 · 𝐵) · (1 / 𝐶)) = 𝐵) |
31 | 24, 30 | breq12d 4666 | . . 3 ⊢ (𝜑 → ((𝐴 · (1 / 𝐶)) < ((𝐶 · 𝐵) · (1 / 𝐶)) ↔ (𝐴 / 𝐶) < 𝐵)) |
32 | 20, 31 | bitrd 268 | . 2 ⊢ (𝜑 → ((𝐶 · 𝐵) < 𝐴 ↔ (𝐴 / 𝐶) < 𝐵)) |
33 | 7, 13, 32 | 3bitrd 294 | 1 ⊢ (𝜑 → ((𝐴 / 𝐵) < 𝐶 ↔ (𝐴 / 𝐶) < 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 class class class wbr 4653 (class class class)co 6650 ℂcc 9934 ℝcr 9935 0cc0 9936 1c1 9937 · cmul 9941 < clt 10074 / cdiv 10684 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-rp 11833 |
This theorem is referenced by: pimrecltneg 40933 |
Copyright terms: Public domain | W3C validator |