MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapfien2 Structured version   Visualization version   GIF version

Theorem mapfien2 8314
Description: Equinumerousity relation for sets of finitely supported functions. (Contributed by Stefan O'Rear, 9-Jul-2015.) (Revised by AV, 7-Jul-2019.)
Hypotheses
Ref Expression
mapfien2.s 𝑆 = {𝑥 ∈ (𝐵𝑚 𝐴) ∣ 𝑥 finSupp 0 }
mapfien2.t 𝑇 = {𝑥 ∈ (𝐷𝑚 𝐶) ∣ 𝑥 finSupp 𝑊}
mapfien2.ac (𝜑𝐴𝐶)
mapfien2.bd (𝜑𝐵𝐷)
mapfien2.z (𝜑0𝐵)
mapfien2.w (𝜑𝑊𝐷)
Assertion
Ref Expression
mapfien2 (𝜑𝑆𝑇)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷   𝑥, 0   𝑥,𝑊
Allowed substitution hints:   𝜑(𝑥)   𝑆(𝑥)   𝑇(𝑥)

Proof of Theorem mapfien2
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mapfien2.z . . 3 (𝜑0𝐵)
2 mapfien2.w . . 3 (𝜑𝑊𝐷)
3 mapfien2.bd . . 3 (𝜑𝐵𝐷)
4 enfixsn 8069 . . 3 (( 0𝐵𝑊𝐷𝐵𝐷) → ∃𝑦(𝑦:𝐵1-1-onto𝐷 ∧ (𝑦0 ) = 𝑊))
51, 2, 3, 4syl3anc 1326 . 2 (𝜑 → ∃𝑦(𝑦:𝐵1-1-onto𝐷 ∧ (𝑦0 ) = 𝑊))
6 mapfien2.ac . . . . 5 (𝜑𝐴𝐶)
7 bren 7964 . . . . 5 (𝐴𝐶 ↔ ∃𝑧 𝑧:𝐴1-1-onto𝐶)
86, 7sylib 208 . . . 4 (𝜑 → ∃𝑧 𝑧:𝐴1-1-onto𝐶)
9 mapfien2.s . . . . . . . . . 10 𝑆 = {𝑥 ∈ (𝐵𝑚 𝐴) ∣ 𝑥 finSupp 0 }
10 eqid 2622 . . . . . . . . . 10 {𝑥 ∈ (𝐷𝑚 𝐶) ∣ 𝑥 finSupp (𝑦0 )} = {𝑥 ∈ (𝐷𝑚 𝐶) ∣ 𝑥 finSupp (𝑦0 )}
11 eqid 2622 . . . . . . . . . 10 (𝑦0 ) = (𝑦0 )
12 f1ocnv 6149 . . . . . . . . . . 11 (𝑧:𝐴1-1-onto𝐶𝑧:𝐶1-1-onto𝐴)
13123ad2ant2 1083 . . . . . . . . . 10 ((𝜑𝑧:𝐴1-1-onto𝐶𝑦:𝐵1-1-onto𝐷) → 𝑧:𝐶1-1-onto𝐴)
14 simp3 1063 . . . . . . . . . 10 ((𝜑𝑧:𝐴1-1-onto𝐶𝑦:𝐵1-1-onto𝐷) → 𝑦:𝐵1-1-onto𝐷)
1563ad2ant1 1082 . . . . . . . . . . 11 ((𝜑𝑧:𝐴1-1-onto𝐶𝑦:𝐵1-1-onto𝐷) → 𝐴𝐶)
16 relen 7960 . . . . . . . . . . . 12 Rel ≈
1716brrelexi 5158 . . . . . . . . . . 11 (𝐴𝐶𝐴 ∈ V)
1815, 17syl 17 . . . . . . . . . 10 ((𝜑𝑧:𝐴1-1-onto𝐶𝑦:𝐵1-1-onto𝐷) → 𝐴 ∈ V)
1933ad2ant1 1082 . . . . . . . . . . 11 ((𝜑𝑧:𝐴1-1-onto𝐶𝑦:𝐵1-1-onto𝐷) → 𝐵𝐷)
2016brrelexi 5158 . . . . . . . . . . 11 (𝐵𝐷𝐵 ∈ V)
2119, 20syl 17 . . . . . . . . . 10 ((𝜑𝑧:𝐴1-1-onto𝐶𝑦:𝐵1-1-onto𝐷) → 𝐵 ∈ V)
2216brrelex2i 5159 . . . . . . . . . . 11 (𝐴𝐶𝐶 ∈ V)
2315, 22syl 17 . . . . . . . . . 10 ((𝜑𝑧:𝐴1-1-onto𝐶𝑦:𝐵1-1-onto𝐷) → 𝐶 ∈ V)
2416brrelex2i 5159 . . . . . . . . . . 11 (𝐵𝐷𝐷 ∈ V)
2519, 24syl 17 . . . . . . . . . 10 ((𝜑𝑧:𝐴1-1-onto𝐶𝑦:𝐵1-1-onto𝐷) → 𝐷 ∈ V)
2613ad2ant1 1082 . . . . . . . . . 10 ((𝜑𝑧:𝐴1-1-onto𝐶𝑦:𝐵1-1-onto𝐷) → 0𝐵)
279, 10, 11, 13, 14, 18, 21, 23, 25, 26mapfien 8313 . . . . . . . . 9 ((𝜑𝑧:𝐴1-1-onto𝐶𝑦:𝐵1-1-onto𝐷) → (𝑤𝑆 ↦ (𝑦 ∘ (𝑤𝑧))):𝑆1-1-onto→{𝑥 ∈ (𝐷𝑚 𝐶) ∣ 𝑥 finSupp (𝑦0 )})
28 ovex 6678 . . . . . . . . . . 11 (𝐵𝑚 𝐴) ∈ V
299, 28rabex2 4815 . . . . . . . . . 10 𝑆 ∈ V
3029f1oen 7976 . . . . . . . . 9 ((𝑤𝑆 ↦ (𝑦 ∘ (𝑤𝑧))):𝑆1-1-onto→{𝑥 ∈ (𝐷𝑚 𝐶) ∣ 𝑥 finSupp (𝑦0 )} → 𝑆 ≈ {𝑥 ∈ (𝐷𝑚 𝐶) ∣ 𝑥 finSupp (𝑦0 )})
3127, 30syl 17 . . . . . . . 8 ((𝜑𝑧:𝐴1-1-onto𝐶𝑦:𝐵1-1-onto𝐷) → 𝑆 ≈ {𝑥 ∈ (𝐷𝑚 𝐶) ∣ 𝑥 finSupp (𝑦0 )})
32313adant3r 1323 . . . . . . 7 ((𝜑𝑧:𝐴1-1-onto𝐶 ∧ (𝑦:𝐵1-1-onto𝐷 ∧ (𝑦0 ) = 𝑊)) → 𝑆 ≈ {𝑥 ∈ (𝐷𝑚 𝐶) ∣ 𝑥 finSupp (𝑦0 )})
33 breq2 4657 . . . . . . . . . . 11 ((𝑦0 ) = 𝑊 → (𝑥 finSupp (𝑦0 ) ↔ 𝑥 finSupp 𝑊))
3433rabbidv 3189 . . . . . . . . . 10 ((𝑦0 ) = 𝑊 → {𝑥 ∈ (𝐷𝑚 𝐶) ∣ 𝑥 finSupp (𝑦0 )} = {𝑥 ∈ (𝐷𝑚 𝐶) ∣ 𝑥 finSupp 𝑊})
35 mapfien2.t . . . . . . . . . 10 𝑇 = {𝑥 ∈ (𝐷𝑚 𝐶) ∣ 𝑥 finSupp 𝑊}
3634, 35syl6eqr 2674 . . . . . . . . 9 ((𝑦0 ) = 𝑊 → {𝑥 ∈ (𝐷𝑚 𝐶) ∣ 𝑥 finSupp (𝑦0 )} = 𝑇)
3736adantl 482 . . . . . . . 8 ((𝑦:𝐵1-1-onto𝐷 ∧ (𝑦0 ) = 𝑊) → {𝑥 ∈ (𝐷𝑚 𝐶) ∣ 𝑥 finSupp (𝑦0 )} = 𝑇)
38373ad2ant3 1084 . . . . . . 7 ((𝜑𝑧:𝐴1-1-onto𝐶 ∧ (𝑦:𝐵1-1-onto𝐷 ∧ (𝑦0 ) = 𝑊)) → {𝑥 ∈ (𝐷𝑚 𝐶) ∣ 𝑥 finSupp (𝑦0 )} = 𝑇)
3932, 38breqtrd 4679 . . . . . 6 ((𝜑𝑧:𝐴1-1-onto𝐶 ∧ (𝑦:𝐵1-1-onto𝐷 ∧ (𝑦0 ) = 𝑊)) → 𝑆𝑇)
40393exp 1264 . . . . 5 (𝜑 → (𝑧:𝐴1-1-onto𝐶 → ((𝑦:𝐵1-1-onto𝐷 ∧ (𝑦0 ) = 𝑊) → 𝑆𝑇)))
4140exlimdv 1861 . . . 4 (𝜑 → (∃𝑧 𝑧:𝐴1-1-onto𝐶 → ((𝑦:𝐵1-1-onto𝐷 ∧ (𝑦0 ) = 𝑊) → 𝑆𝑇)))
428, 41mpd 15 . . 3 (𝜑 → ((𝑦:𝐵1-1-onto𝐷 ∧ (𝑦0 ) = 𝑊) → 𝑆𝑇))
4342exlimdv 1861 . 2 (𝜑 → (∃𝑦(𝑦:𝐵1-1-onto𝐷 ∧ (𝑦0 ) = 𝑊) → 𝑆𝑇))
445, 43mpd 15 1 (𝜑𝑆𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wex 1704  wcel 1990  {crab 2916  Vcvv 3200   class class class wbr 4653  cmpt 4729  ccnv 5113  ccom 5118  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  𝑚 cmap 7857  cen 7952   finSupp cfsupp 8275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-1o 7560  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-fin 7959  df-fsupp 8276
This theorem is referenced by:  frlmpwfi  37668
  Copyright terms: Public domain W3C validator