![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mapfienlem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for mapfien 8313. (Contributed by AV, 3-Jul-2019.) |
Ref | Expression |
---|---|
mapfien.s | ⊢ 𝑆 = {𝑥 ∈ (𝐵 ↑𝑚 𝐴) ∣ 𝑥 finSupp 𝑍} |
mapfien.t | ⊢ 𝑇 = {𝑥 ∈ (𝐷 ↑𝑚 𝐶) ∣ 𝑥 finSupp 𝑊} |
mapfien.w | ⊢ 𝑊 = (𝐺‘𝑍) |
mapfien.f | ⊢ (𝜑 → 𝐹:𝐶–1-1-onto→𝐴) |
mapfien.g | ⊢ (𝜑 → 𝐺:𝐵–1-1-onto→𝐷) |
mapfien.a | ⊢ (𝜑 → 𝐴 ∈ V) |
mapfien.b | ⊢ (𝜑 → 𝐵 ∈ V) |
mapfien.c | ⊢ (𝜑 → 𝐶 ∈ V) |
mapfien.d | ⊢ (𝜑 → 𝐷 ∈ V) |
mapfien.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
Ref | Expression |
---|---|
mapfienlem1 | ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑆) → (𝐺 ∘ (𝑓 ∘ 𝐹)) finSupp 𝑊) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapfien.w | . . . 4 ⊢ 𝑊 = (𝐺‘𝑍) | |
2 | fvex 6201 | . . . 4 ⊢ (𝐺‘𝑍) ∈ V | |
3 | 1, 2 | eqeltri 2697 | . . 3 ⊢ 𝑊 ∈ V |
4 | 3 | a1i 11 | . 2 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑆) → 𝑊 ∈ V) |
5 | mapfien.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
6 | 5 | adantr 481 | . 2 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑆) → 𝑍 ∈ 𝐵) |
7 | elrabi 3359 | . . . . 5 ⊢ (𝑓 ∈ {𝑥 ∈ (𝐵 ↑𝑚 𝐴) ∣ 𝑥 finSupp 𝑍} → 𝑓 ∈ (𝐵 ↑𝑚 𝐴)) | |
8 | elmapi 7879 | . . . . 5 ⊢ (𝑓 ∈ (𝐵 ↑𝑚 𝐴) → 𝑓:𝐴⟶𝐵) | |
9 | 7, 8 | syl 17 | . . . 4 ⊢ (𝑓 ∈ {𝑥 ∈ (𝐵 ↑𝑚 𝐴) ∣ 𝑥 finSupp 𝑍} → 𝑓:𝐴⟶𝐵) |
10 | mapfien.s | . . . 4 ⊢ 𝑆 = {𝑥 ∈ (𝐵 ↑𝑚 𝐴) ∣ 𝑥 finSupp 𝑍} | |
11 | 9, 10 | eleq2s 2719 | . . 3 ⊢ (𝑓 ∈ 𝑆 → 𝑓:𝐴⟶𝐵) |
12 | mapfien.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐶–1-1-onto→𝐴) | |
13 | f1of 6137 | . . . 4 ⊢ (𝐹:𝐶–1-1-onto→𝐴 → 𝐹:𝐶⟶𝐴) | |
14 | 12, 13 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹:𝐶⟶𝐴) |
15 | fco 6058 | . . 3 ⊢ ((𝑓:𝐴⟶𝐵 ∧ 𝐹:𝐶⟶𝐴) → (𝑓 ∘ 𝐹):𝐶⟶𝐵) | |
16 | 11, 14, 15 | syl2anr 495 | . 2 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑆) → (𝑓 ∘ 𝐹):𝐶⟶𝐵) |
17 | mapfien.g | . . . 4 ⊢ (𝜑 → 𝐺:𝐵–1-1-onto→𝐷) | |
18 | f1of 6137 | . . . 4 ⊢ (𝐺:𝐵–1-1-onto→𝐷 → 𝐺:𝐵⟶𝐷) | |
19 | 17, 18 | syl 17 | . . 3 ⊢ (𝜑 → 𝐺:𝐵⟶𝐷) |
20 | 19 | adantr 481 | . 2 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑆) → 𝐺:𝐵⟶𝐷) |
21 | ssid 3624 | . . 3 ⊢ 𝐵 ⊆ 𝐵 | |
22 | 21 | a1i 11 | . 2 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑆) → 𝐵 ⊆ 𝐵) |
23 | mapfien.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ V) | |
24 | 23 | adantr 481 | . 2 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑆) → 𝐶 ∈ V) |
25 | mapfien.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ V) | |
26 | 25 | adantr 481 | . 2 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑆) → 𝐵 ∈ V) |
27 | breq1 4656 | . . . . . 6 ⊢ (𝑥 = 𝑓 → (𝑥 finSupp 𝑍 ↔ 𝑓 finSupp 𝑍)) | |
28 | 27, 10 | elrab2 3366 | . . . . 5 ⊢ (𝑓 ∈ 𝑆 ↔ (𝑓 ∈ (𝐵 ↑𝑚 𝐴) ∧ 𝑓 finSupp 𝑍)) |
29 | 28 | simprbi 480 | . . . 4 ⊢ (𝑓 ∈ 𝑆 → 𝑓 finSupp 𝑍) |
30 | 29 | adantl 482 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑆) → 𝑓 finSupp 𝑍) |
31 | f1of1 6136 | . . . . 5 ⊢ (𝐹:𝐶–1-1-onto→𝐴 → 𝐹:𝐶–1-1→𝐴) | |
32 | 12, 31 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹:𝐶–1-1→𝐴) |
33 | 32 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑆) → 𝐹:𝐶–1-1→𝐴) |
34 | simpr 477 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑆) → 𝑓 ∈ 𝑆) | |
35 | 30, 33, 6, 34 | fsuppco 8307 | . 2 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑆) → (𝑓 ∘ 𝐹) finSupp 𝑍) |
36 | 1 | eqcomi 2631 | . . 3 ⊢ (𝐺‘𝑍) = 𝑊 |
37 | 36 | a1i 11 | . 2 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑆) → (𝐺‘𝑍) = 𝑊) |
38 | 4, 6, 16, 20, 22, 24, 26, 35, 37 | fsuppcor 8309 | 1 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑆) → (𝐺 ∘ (𝑓 ∘ 𝐹)) finSupp 𝑊) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 {crab 2916 Vcvv 3200 ⊆ wss 3574 class class class wbr 4653 ∘ ccom 5118 ⟶wf 5884 –1-1→wf1 5885 –1-1-onto→wf1o 5887 ‘cfv 5888 (class class class)co 6650 ↑𝑚 cmap 7857 finSupp cfsupp 8275 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-supp 7296 df-1o 7560 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-fin 7959 df-fsupp 8276 |
This theorem is referenced by: mapfien 8313 |
Copyright terms: Public domain | W3C validator |