Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metf1o Structured version   Visualization version   GIF version

Theorem metf1o 33551
Description: Use a bijection with a metric space to construct a metric on a set. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypothesis
Ref Expression
metf1o.2 𝑁 = (𝑥𝑌, 𝑦𝑌 ↦ ((𝐹𝑥)𝑀(𝐹𝑦)))
Assertion
Ref Expression
metf1o ((𝑌𝐴𝑀 ∈ (Met‘𝑋) ∧ 𝐹:𝑌1-1-onto𝑋) → 𝑁 ∈ (Met‘𝑌))
Distinct variable groups:   𝑥,𝑀,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝑥,𝐹,𝑦   𝑥,𝐴,𝑦
Allowed substitution hints:   𝑁(𝑥,𝑦)

Proof of Theorem metf1o
Dummy variables 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1of 6137 . . . . . . 7 (𝐹:𝑌1-1-onto𝑋𝐹:𝑌𝑋)
2 ffvelrn 6357 . . . . . . . . 9 ((𝐹:𝑌𝑋𝑥𝑌) → (𝐹𝑥) ∈ 𝑋)
32ex 450 . . . . . . . 8 (𝐹:𝑌𝑋 → (𝑥𝑌 → (𝐹𝑥) ∈ 𝑋))
4 ffvelrn 6357 . . . . . . . . 9 ((𝐹:𝑌𝑋𝑦𝑌) → (𝐹𝑦) ∈ 𝑋)
54ex 450 . . . . . . . 8 (𝐹:𝑌𝑋 → (𝑦𝑌 → (𝐹𝑦) ∈ 𝑋))
63, 5anim12d 586 . . . . . . 7 (𝐹:𝑌𝑋 → ((𝑥𝑌𝑦𝑌) → ((𝐹𝑥) ∈ 𝑋 ∧ (𝐹𝑦) ∈ 𝑋)))
71, 6syl 17 . . . . . 6 (𝐹:𝑌1-1-onto𝑋 → ((𝑥𝑌𝑦𝑌) → ((𝐹𝑥) ∈ 𝑋 ∧ (𝐹𝑦) ∈ 𝑋)))
8 metcl 22137 . . . . . . 7 ((𝑀 ∈ (Met‘𝑋) ∧ (𝐹𝑥) ∈ 𝑋 ∧ (𝐹𝑦) ∈ 𝑋) → ((𝐹𝑥)𝑀(𝐹𝑦)) ∈ ℝ)
983expib 1268 . . . . . 6 (𝑀 ∈ (Met‘𝑋) → (((𝐹𝑥) ∈ 𝑋 ∧ (𝐹𝑦) ∈ 𝑋) → ((𝐹𝑥)𝑀(𝐹𝑦)) ∈ ℝ))
107, 9sylan9r 690 . . . . 5 ((𝑀 ∈ (Met‘𝑋) ∧ 𝐹:𝑌1-1-onto𝑋) → ((𝑥𝑌𝑦𝑌) → ((𝐹𝑥)𝑀(𝐹𝑦)) ∈ ℝ))
11103adant1 1079 . . . 4 ((𝑌𝐴𝑀 ∈ (Met‘𝑋) ∧ 𝐹:𝑌1-1-onto𝑋) → ((𝑥𝑌𝑦𝑌) → ((𝐹𝑥)𝑀(𝐹𝑦)) ∈ ℝ))
1211ralrimivv 2970 . . 3 ((𝑌𝐴𝑀 ∈ (Met‘𝑋) ∧ 𝐹:𝑌1-1-onto𝑋) → ∀𝑥𝑌𝑦𝑌 ((𝐹𝑥)𝑀(𝐹𝑦)) ∈ ℝ)
13 metf1o.2 . . . 4 𝑁 = (𝑥𝑌, 𝑦𝑌 ↦ ((𝐹𝑥)𝑀(𝐹𝑦)))
1413fmpt2 7237 . . 3 (∀𝑥𝑌𝑦𝑌 ((𝐹𝑥)𝑀(𝐹𝑦)) ∈ ℝ ↔ 𝑁:(𝑌 × 𝑌)⟶ℝ)
1512, 14sylib 208 . 2 ((𝑌𝐴𝑀 ∈ (Met‘𝑋) ∧ 𝐹:𝑌1-1-onto𝑋) → 𝑁:(𝑌 × 𝑌)⟶ℝ)
16 fveq2 6191 . . . . . . . . . . 11 (𝑥 = 𝑢 → (𝐹𝑥) = (𝐹𝑢))
1716oveq1d 6665 . . . . . . . . . 10 (𝑥 = 𝑢 → ((𝐹𝑥)𝑀(𝐹𝑦)) = ((𝐹𝑢)𝑀(𝐹𝑦)))
18 fveq2 6191 . . . . . . . . . . 11 (𝑦 = 𝑣 → (𝐹𝑦) = (𝐹𝑣))
1918oveq2d 6666 . . . . . . . . . 10 (𝑦 = 𝑣 → ((𝐹𝑢)𝑀(𝐹𝑦)) = ((𝐹𝑢)𝑀(𝐹𝑣)))
20 ovex 6678 . . . . . . . . . 10 ((𝐹𝑢)𝑀(𝐹𝑣)) ∈ V
2117, 19, 13, 20ovmpt2 6796 . . . . . . . . 9 ((𝑢𝑌𝑣𝑌) → (𝑢𝑁𝑣) = ((𝐹𝑢)𝑀(𝐹𝑣)))
2221eqeq1d 2624 . . . . . . . 8 ((𝑢𝑌𝑣𝑌) → ((𝑢𝑁𝑣) = 0 ↔ ((𝐹𝑢)𝑀(𝐹𝑣)) = 0))
2322adantl 482 . . . . . . 7 (((𝑀 ∈ (Met‘𝑋) ∧ 𝐹:𝑌1-1-onto𝑋) ∧ (𝑢𝑌𝑣𝑌)) → ((𝑢𝑁𝑣) = 0 ↔ ((𝐹𝑢)𝑀(𝐹𝑣)) = 0))
24 ffvelrn 6357 . . . . . . . . . . . . 13 ((𝐹:𝑌𝑋𝑢𝑌) → (𝐹𝑢) ∈ 𝑋)
2524ex 450 . . . . . . . . . . . 12 (𝐹:𝑌𝑋 → (𝑢𝑌 → (𝐹𝑢) ∈ 𝑋))
26 ffvelrn 6357 . . . . . . . . . . . . 13 ((𝐹:𝑌𝑋𝑣𝑌) → (𝐹𝑣) ∈ 𝑋)
2726ex 450 . . . . . . . . . . . 12 (𝐹:𝑌𝑋 → (𝑣𝑌 → (𝐹𝑣) ∈ 𝑋))
2825, 27anim12d 586 . . . . . . . . . . 11 (𝐹:𝑌𝑋 → ((𝑢𝑌𝑣𝑌) → ((𝐹𝑢) ∈ 𝑋 ∧ (𝐹𝑣) ∈ 𝑋)))
291, 28syl 17 . . . . . . . . . 10 (𝐹:𝑌1-1-onto𝑋 → ((𝑢𝑌𝑣𝑌) → ((𝐹𝑢) ∈ 𝑋 ∧ (𝐹𝑣) ∈ 𝑋)))
3029imp 445 . . . . . . . . 9 ((𝐹:𝑌1-1-onto𝑋 ∧ (𝑢𝑌𝑣𝑌)) → ((𝐹𝑢) ∈ 𝑋 ∧ (𝐹𝑣) ∈ 𝑋))
3130adantll 750 . . . . . . . 8 (((𝑀 ∈ (Met‘𝑋) ∧ 𝐹:𝑌1-1-onto𝑋) ∧ (𝑢𝑌𝑣𝑌)) → ((𝐹𝑢) ∈ 𝑋 ∧ (𝐹𝑣) ∈ 𝑋))
32 meteq0 22144 . . . . . . . . . 10 ((𝑀 ∈ (Met‘𝑋) ∧ (𝐹𝑢) ∈ 𝑋 ∧ (𝐹𝑣) ∈ 𝑋) → (((𝐹𝑢)𝑀(𝐹𝑣)) = 0 ↔ (𝐹𝑢) = (𝐹𝑣)))
33323expb 1266 . . . . . . . . 9 ((𝑀 ∈ (Met‘𝑋) ∧ ((𝐹𝑢) ∈ 𝑋 ∧ (𝐹𝑣) ∈ 𝑋)) → (((𝐹𝑢)𝑀(𝐹𝑣)) = 0 ↔ (𝐹𝑢) = (𝐹𝑣)))
3433adantlr 751 . . . . . . . 8 (((𝑀 ∈ (Met‘𝑋) ∧ 𝐹:𝑌1-1-onto𝑋) ∧ ((𝐹𝑢) ∈ 𝑋 ∧ (𝐹𝑣) ∈ 𝑋)) → (((𝐹𝑢)𝑀(𝐹𝑣)) = 0 ↔ (𝐹𝑢) = (𝐹𝑣)))
3531, 34syldan 487 . . . . . . 7 (((𝑀 ∈ (Met‘𝑋) ∧ 𝐹:𝑌1-1-onto𝑋) ∧ (𝑢𝑌𝑣𝑌)) → (((𝐹𝑢)𝑀(𝐹𝑣)) = 0 ↔ (𝐹𝑢) = (𝐹𝑣)))
36 f1of1 6136 . . . . . . . . 9 (𝐹:𝑌1-1-onto𝑋𝐹:𝑌1-1𝑋)
37 f1fveq 6519 . . . . . . . . 9 ((𝐹:𝑌1-1𝑋 ∧ (𝑢𝑌𝑣𝑌)) → ((𝐹𝑢) = (𝐹𝑣) ↔ 𝑢 = 𝑣))
3836, 37sylan 488 . . . . . . . 8 ((𝐹:𝑌1-1-onto𝑋 ∧ (𝑢𝑌𝑣𝑌)) → ((𝐹𝑢) = (𝐹𝑣) ↔ 𝑢 = 𝑣))
3938adantll 750 . . . . . . 7 (((𝑀 ∈ (Met‘𝑋) ∧ 𝐹:𝑌1-1-onto𝑋) ∧ (𝑢𝑌𝑣𝑌)) → ((𝐹𝑢) = (𝐹𝑣) ↔ 𝑢 = 𝑣))
4023, 35, 393bitrd 294 . . . . . 6 (((𝑀 ∈ (Met‘𝑋) ∧ 𝐹:𝑌1-1-onto𝑋) ∧ (𝑢𝑌𝑣𝑌)) → ((𝑢𝑁𝑣) = 0 ↔ 𝑢 = 𝑣))
41 ffvelrn 6357 . . . . . . . . . . . . . . 15 ((𝐹:𝑌𝑋𝑤𝑌) → (𝐹𝑤) ∈ 𝑋)
4241ex 450 . . . . . . . . . . . . . 14 (𝐹:𝑌𝑋 → (𝑤𝑌 → (𝐹𝑤) ∈ 𝑋))
4328, 42anim12d 586 . . . . . . . . . . . . 13 (𝐹:𝑌𝑋 → (((𝑢𝑌𝑣𝑌) ∧ 𝑤𝑌) → (((𝐹𝑢) ∈ 𝑋 ∧ (𝐹𝑣) ∈ 𝑋) ∧ (𝐹𝑤) ∈ 𝑋)))
441, 43syl 17 . . . . . . . . . . . 12 (𝐹:𝑌1-1-onto𝑋 → (((𝑢𝑌𝑣𝑌) ∧ 𝑤𝑌) → (((𝐹𝑢) ∈ 𝑋 ∧ (𝐹𝑣) ∈ 𝑋) ∧ (𝐹𝑤) ∈ 𝑋)))
4544imp 445 . . . . . . . . . . 11 ((𝐹:𝑌1-1-onto𝑋 ∧ ((𝑢𝑌𝑣𝑌) ∧ 𝑤𝑌)) → (((𝐹𝑢) ∈ 𝑋 ∧ (𝐹𝑣) ∈ 𝑋) ∧ (𝐹𝑤) ∈ 𝑋))
4645adantll 750 . . . . . . . . . 10 (((𝑀 ∈ (Met‘𝑋) ∧ 𝐹:𝑌1-1-onto𝑋) ∧ ((𝑢𝑌𝑣𝑌) ∧ 𝑤𝑌)) → (((𝐹𝑢) ∈ 𝑋 ∧ (𝐹𝑣) ∈ 𝑋) ∧ (𝐹𝑤) ∈ 𝑋))
47 mettri2 22146 . . . . . . . . . . . . . . 15 ((𝑀 ∈ (Met‘𝑋) ∧ ((𝐹𝑤) ∈ 𝑋 ∧ (𝐹𝑢) ∈ 𝑋 ∧ (𝐹𝑣) ∈ 𝑋)) → ((𝐹𝑢)𝑀(𝐹𝑣)) ≤ (((𝐹𝑤)𝑀(𝐹𝑢)) + ((𝐹𝑤)𝑀(𝐹𝑣))))
4847expcom 451 . . . . . . . . . . . . . 14 (((𝐹𝑤) ∈ 𝑋 ∧ (𝐹𝑢) ∈ 𝑋 ∧ (𝐹𝑣) ∈ 𝑋) → (𝑀 ∈ (Met‘𝑋) → ((𝐹𝑢)𝑀(𝐹𝑣)) ≤ (((𝐹𝑤)𝑀(𝐹𝑢)) + ((𝐹𝑤)𝑀(𝐹𝑣)))))
49483expb 1266 . . . . . . . . . . . . 13 (((𝐹𝑤) ∈ 𝑋 ∧ ((𝐹𝑢) ∈ 𝑋 ∧ (𝐹𝑣) ∈ 𝑋)) → (𝑀 ∈ (Met‘𝑋) → ((𝐹𝑢)𝑀(𝐹𝑣)) ≤ (((𝐹𝑤)𝑀(𝐹𝑢)) + ((𝐹𝑤)𝑀(𝐹𝑣)))))
5049ancoms 469 . . . . . . . . . . . 12 ((((𝐹𝑢) ∈ 𝑋 ∧ (𝐹𝑣) ∈ 𝑋) ∧ (𝐹𝑤) ∈ 𝑋) → (𝑀 ∈ (Met‘𝑋) → ((𝐹𝑢)𝑀(𝐹𝑣)) ≤ (((𝐹𝑤)𝑀(𝐹𝑢)) + ((𝐹𝑤)𝑀(𝐹𝑣)))))
5150impcom 446 . . . . . . . . . . 11 ((𝑀 ∈ (Met‘𝑋) ∧ (((𝐹𝑢) ∈ 𝑋 ∧ (𝐹𝑣) ∈ 𝑋) ∧ (𝐹𝑤) ∈ 𝑋)) → ((𝐹𝑢)𝑀(𝐹𝑣)) ≤ (((𝐹𝑤)𝑀(𝐹𝑢)) + ((𝐹𝑤)𝑀(𝐹𝑣))))
5251adantlr 751 . . . . . . . . . 10 (((𝑀 ∈ (Met‘𝑋) ∧ 𝐹:𝑌1-1-onto𝑋) ∧ (((𝐹𝑢) ∈ 𝑋 ∧ (𝐹𝑣) ∈ 𝑋) ∧ (𝐹𝑤) ∈ 𝑋)) → ((𝐹𝑢)𝑀(𝐹𝑣)) ≤ (((𝐹𝑤)𝑀(𝐹𝑢)) + ((𝐹𝑤)𝑀(𝐹𝑣))))
5346, 52syldan 487 . . . . . . . . 9 (((𝑀 ∈ (Met‘𝑋) ∧ 𝐹:𝑌1-1-onto𝑋) ∧ ((𝑢𝑌𝑣𝑌) ∧ 𝑤𝑌)) → ((𝐹𝑢)𝑀(𝐹𝑣)) ≤ (((𝐹𝑤)𝑀(𝐹𝑢)) + ((𝐹𝑤)𝑀(𝐹𝑣))))
5453anassrs 680 . . . . . . . 8 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝐹:𝑌1-1-onto𝑋) ∧ (𝑢𝑌𝑣𝑌)) ∧ 𝑤𝑌) → ((𝐹𝑢)𝑀(𝐹𝑣)) ≤ (((𝐹𝑤)𝑀(𝐹𝑢)) + ((𝐹𝑤)𝑀(𝐹𝑣))))
5521adantr 481 . . . . . . . . . 10 (((𝑢𝑌𝑣𝑌) ∧ 𝑤𝑌) → (𝑢𝑁𝑣) = ((𝐹𝑢)𝑀(𝐹𝑣)))
56 fveq2 6191 . . . . . . . . . . . . . . 15 (𝑥 = 𝑤 → (𝐹𝑥) = (𝐹𝑤))
5756oveq1d 6665 . . . . . . . . . . . . . 14 (𝑥 = 𝑤 → ((𝐹𝑥)𝑀(𝐹𝑦)) = ((𝐹𝑤)𝑀(𝐹𝑦)))
58 fveq2 6191 . . . . . . . . . . . . . . 15 (𝑦 = 𝑢 → (𝐹𝑦) = (𝐹𝑢))
5958oveq2d 6666 . . . . . . . . . . . . . 14 (𝑦 = 𝑢 → ((𝐹𝑤)𝑀(𝐹𝑦)) = ((𝐹𝑤)𝑀(𝐹𝑢)))
60 ovex 6678 . . . . . . . . . . . . . 14 ((𝐹𝑤)𝑀(𝐹𝑢)) ∈ V
6157, 59, 13, 60ovmpt2 6796 . . . . . . . . . . . . 13 ((𝑤𝑌𝑢𝑌) → (𝑤𝑁𝑢) = ((𝐹𝑤)𝑀(𝐹𝑢)))
6261ancoms 469 . . . . . . . . . . . 12 ((𝑢𝑌𝑤𝑌) → (𝑤𝑁𝑢) = ((𝐹𝑤)𝑀(𝐹𝑢)))
6362adantlr 751 . . . . . . . . . . 11 (((𝑢𝑌𝑣𝑌) ∧ 𝑤𝑌) → (𝑤𝑁𝑢) = ((𝐹𝑤)𝑀(𝐹𝑢)))
6418oveq2d 6666 . . . . . . . . . . . . . 14 (𝑦 = 𝑣 → ((𝐹𝑤)𝑀(𝐹𝑦)) = ((𝐹𝑤)𝑀(𝐹𝑣)))
65 ovex 6678 . . . . . . . . . . . . . 14 ((𝐹𝑤)𝑀(𝐹𝑣)) ∈ V
6657, 64, 13, 65ovmpt2 6796 . . . . . . . . . . . . 13 ((𝑤𝑌𝑣𝑌) → (𝑤𝑁𝑣) = ((𝐹𝑤)𝑀(𝐹𝑣)))
6766ancoms 469 . . . . . . . . . . . 12 ((𝑣𝑌𝑤𝑌) → (𝑤𝑁𝑣) = ((𝐹𝑤)𝑀(𝐹𝑣)))
6867adantll 750 . . . . . . . . . . 11 (((𝑢𝑌𝑣𝑌) ∧ 𝑤𝑌) → (𝑤𝑁𝑣) = ((𝐹𝑤)𝑀(𝐹𝑣)))
6963, 68oveq12d 6668 . . . . . . . . . 10 (((𝑢𝑌𝑣𝑌) ∧ 𝑤𝑌) → ((𝑤𝑁𝑢) + (𝑤𝑁𝑣)) = (((𝐹𝑤)𝑀(𝐹𝑢)) + ((𝐹𝑤)𝑀(𝐹𝑣))))
7055, 69breq12d 4666 . . . . . . . . 9 (((𝑢𝑌𝑣𝑌) ∧ 𝑤𝑌) → ((𝑢𝑁𝑣) ≤ ((𝑤𝑁𝑢) + (𝑤𝑁𝑣)) ↔ ((𝐹𝑢)𝑀(𝐹𝑣)) ≤ (((𝐹𝑤)𝑀(𝐹𝑢)) + ((𝐹𝑤)𝑀(𝐹𝑣)))))
7170adantll 750 . . . . . . . 8 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝐹:𝑌1-1-onto𝑋) ∧ (𝑢𝑌𝑣𝑌)) ∧ 𝑤𝑌) → ((𝑢𝑁𝑣) ≤ ((𝑤𝑁𝑢) + (𝑤𝑁𝑣)) ↔ ((𝐹𝑢)𝑀(𝐹𝑣)) ≤ (((𝐹𝑤)𝑀(𝐹𝑢)) + ((𝐹𝑤)𝑀(𝐹𝑣)))))
7254, 71mpbird 247 . . . . . . 7 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝐹:𝑌1-1-onto𝑋) ∧ (𝑢𝑌𝑣𝑌)) ∧ 𝑤𝑌) → (𝑢𝑁𝑣) ≤ ((𝑤𝑁𝑢) + (𝑤𝑁𝑣)))
7372ralrimiva 2966 . . . . . 6 (((𝑀 ∈ (Met‘𝑋) ∧ 𝐹:𝑌1-1-onto𝑋) ∧ (𝑢𝑌𝑣𝑌)) → ∀𝑤𝑌 (𝑢𝑁𝑣) ≤ ((𝑤𝑁𝑢) + (𝑤𝑁𝑣)))
7440, 73jca 554 . . . . 5 (((𝑀 ∈ (Met‘𝑋) ∧ 𝐹:𝑌1-1-onto𝑋) ∧ (𝑢𝑌𝑣𝑌)) → (((𝑢𝑁𝑣) = 0 ↔ 𝑢 = 𝑣) ∧ ∀𝑤𝑌 (𝑢𝑁𝑣) ≤ ((𝑤𝑁𝑢) + (𝑤𝑁𝑣))))
75743adantl1 1217 . . . 4 (((𝑌𝐴𝑀 ∈ (Met‘𝑋) ∧ 𝐹:𝑌1-1-onto𝑋) ∧ (𝑢𝑌𝑣𝑌)) → (((𝑢𝑁𝑣) = 0 ↔ 𝑢 = 𝑣) ∧ ∀𝑤𝑌 (𝑢𝑁𝑣) ≤ ((𝑤𝑁𝑢) + (𝑤𝑁𝑣))))
7675ex 450 . . 3 ((𝑌𝐴𝑀 ∈ (Met‘𝑋) ∧ 𝐹:𝑌1-1-onto𝑋) → ((𝑢𝑌𝑣𝑌) → (((𝑢𝑁𝑣) = 0 ↔ 𝑢 = 𝑣) ∧ ∀𝑤𝑌 (𝑢𝑁𝑣) ≤ ((𝑤𝑁𝑢) + (𝑤𝑁𝑣)))))
7776ralrimivv 2970 . 2 ((𝑌𝐴𝑀 ∈ (Met‘𝑋) ∧ 𝐹:𝑌1-1-onto𝑋) → ∀𝑢𝑌𝑣𝑌 (((𝑢𝑁𝑣) = 0 ↔ 𝑢 = 𝑣) ∧ ∀𝑤𝑌 (𝑢𝑁𝑣) ≤ ((𝑤𝑁𝑢) + (𝑤𝑁𝑣))))
78 ismet 22128 . . 3 (𝑌𝐴 → (𝑁 ∈ (Met‘𝑌) ↔ (𝑁:(𝑌 × 𝑌)⟶ℝ ∧ ∀𝑢𝑌𝑣𝑌 (((𝑢𝑁𝑣) = 0 ↔ 𝑢 = 𝑣) ∧ ∀𝑤𝑌 (𝑢𝑁𝑣) ≤ ((𝑤𝑁𝑢) + (𝑤𝑁𝑣))))))
79783ad2ant1 1082 . 2 ((𝑌𝐴𝑀 ∈ (Met‘𝑋) ∧ 𝐹:𝑌1-1-onto𝑋) → (𝑁 ∈ (Met‘𝑌) ↔ (𝑁:(𝑌 × 𝑌)⟶ℝ ∧ ∀𝑢𝑌𝑣𝑌 (((𝑢𝑁𝑣) = 0 ↔ 𝑢 = 𝑣) ∧ ∀𝑤𝑌 (𝑢𝑁𝑣) ≤ ((𝑤𝑁𝑢) + (𝑤𝑁𝑣))))))
8015, 77, 79mpbir2and 957 1 ((𝑌𝐴𝑀 ∈ (Met‘𝑋) ∧ 𝐹:𝑌1-1-onto𝑋) → 𝑁 ∈ (Met‘𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912   class class class wbr 4653   × cxp 5112  wf 5884  1-1wf1 5885  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  cmpt2 6652  cr 9935  0cc0 9936   + caddc 9939  cle 10075  Metcme 19732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-mulcl 9998  ax-i2m1 10004
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-xadd 11947  df-xmet 19739  df-met 19740
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator