| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mndpsuppss | Structured version Visualization version Unicode version | ||
| Description: The support of a mapping of a scalar multiplication with a function of scalars is a subset of the support of the function of scalars. (Contributed by AV, 5-Apr-2019.) |
| Ref | Expression |
|---|---|
| mndpsuppss.r |
|
| Ref | Expression |
|---|---|
| mndpsuppss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioran 511 |
. . . . . 6
| |
| 2 | nne 2798 |
. . . . . . 7
| |
| 3 | nne 2798 |
. . . . . . 7
| |
| 4 | 2, 3 | anbi12i 733 |
. . . . . 6
|
| 5 | 1, 4 | bitri 264 |
. . . . 5
|
| 6 | elmapfn 7880 |
. . . . . . . . . . . 12
| |
| 7 | 6 | ad2antrl 764 |
. . . . . . . . . . 11
|
| 8 | 7 | adantr 481 |
. . . . . . . . . 10
|
| 9 | elmapfn 7880 |
. . . . . . . . . . . 12
| |
| 10 | 9 | ad2antll 765 |
. . . . . . . . . . 11
|
| 11 | 10 | adantr 481 |
. . . . . . . . . 10
|
| 12 | simplr 792 |
. . . . . . . . . . 11
| |
| 13 | 12 | adantr 481 |
. . . . . . . . . 10
|
| 14 | inidm 3822 |
. . . . . . . . . 10
| |
| 15 | simplrl 800 |
. . . . . . . . . 10
| |
| 16 | simplrr 801 |
. . . . . . . . . 10
| |
| 17 | 8, 11, 13, 13, 14, 15, 16 | ofval 6906 |
. . . . . . . . 9
|
| 18 | 17 | an32s 846 |
. . . . . . . 8
|
| 19 | eqid 2622 |
. . . . . . . . . . . 12
| |
| 20 | eqid 2622 |
. . . . . . . . . . . 12
| |
| 21 | 19, 20 | mndidcl 17308 |
. . . . . . . . . . 11
|
| 22 | 21 | ancli 574 |
. . . . . . . . . 10
|
| 23 | 22 | ad4antr 768 |
. . . . . . . . 9
|
| 24 | eqid 2622 |
. . . . . . . . . 10
| |
| 25 | 19, 24, 20 | mndlid 17311 |
. . . . . . . . 9
|
| 26 | 23, 25 | syl 17 |
. . . . . . . 8
|
| 27 | 18, 26 | eqtrd 2656 |
. . . . . . 7
|
| 28 | nne 2798 |
. . . . . . 7
| |
| 29 | 27, 28 | sylibr 224 |
. . . . . 6
|
| 30 | 29 | ex 450 |
. . . . 5
|
| 31 | 5, 30 | syl5bi 232 |
. . . 4
|
| 32 | 31 | con4d 114 |
. . 3
|
| 33 | 32 | ss2rabdv 3683 |
. 2
|
| 34 | 7, 10, 12, 12, 14 | offn 6908 |
. . . . 5
|
| 35 | fnfun 5988 |
. . . . 5
| |
| 36 | 34, 35 | syl 17 |
. . . 4
|
| 37 | ovex 6678 |
. . . . 5
| |
| 38 | 37 | a1i 11 |
. . . 4
|
| 39 | fvexd 6203 |
. . . 4
| |
| 40 | suppval1 7301 |
. . . 4
| |
| 41 | 36, 38, 39, 40 | syl3anc 1326 |
. . 3
|
| 42 | 12, 7, 10 | offvalfv 42121 |
. . . . . 6
|
| 43 | 42 | dmeqd 5326 |
. . . . 5
|
| 44 | ovex 6678 |
. . . . . 6
| |
| 45 | eqid 2622 |
. . . . . 6
| |
| 46 | 44, 45 | dmmpti 6023 |
. . . . 5
|
| 47 | 43, 46 | syl6eq 2672 |
. . . 4
|
| 48 | rabeq 3192 |
. . . 4
| |
| 49 | 47, 48 | syl 17 |
. . 3
|
| 50 | 41, 49 | eqtrd 2656 |
. 2
|
| 51 | elmapfun 7881 |
. . . . . . 7
| |
| 52 | id 22 |
. . . . . . 7
| |
| 53 | fvexd 6203 |
. . . . . . 7
| |
| 54 | suppval1 7301 |
. . . . . . 7
| |
| 55 | 51, 52, 53, 54 | syl3anc 1326 |
. . . . . 6
|
| 56 | elmapi 7879 |
. . . . . . 7
| |
| 57 | fdm 6051 |
. . . . . . 7
| |
| 58 | rabeq 3192 |
. . . . . . 7
| |
| 59 | 56, 57, 58 | 3syl 18 |
. . . . . 6
|
| 60 | 55, 59 | eqtrd 2656 |
. . . . 5
|
| 61 | 60 | ad2antrl 764 |
. . . 4
|
| 62 | elmapfun 7881 |
. . . . . . 7
| |
| 63 | 62 | ad2antll 765 |
. . . . . 6
|
| 64 | simprr 796 |
. . . . . 6
| |
| 65 | suppval1 7301 |
. . . . . 6
| |
| 66 | 63, 64, 39, 65 | syl3anc 1326 |
. . . . 5
|
| 67 | elmapi 7879 |
. . . . . . . 8
| |
| 68 | fdm 6051 |
. . . . . . . 8
| |
| 69 | 67, 68 | syl 17 |
. . . . . . 7
|
| 70 | 69 | ad2antll 765 |
. . . . . 6
|
| 71 | rabeq 3192 |
. . . . . 6
| |
| 72 | 70, 71 | syl 17 |
. . . . 5
|
| 73 | 66, 72 | eqtrd 2656 |
. . . 4
|
| 74 | 61, 73 | uneq12d 3768 |
. . 3
|
| 75 | unrab 3898 |
. . 3
| |
| 76 | 74, 75 | syl6eq 2672 |
. 2
|
| 77 | 33, 50, 76 | 3sstr4d 3648 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-of 6897 df-1st 7168 df-2nd 7169 df-supp 7296 df-map 7859 df-0g 16102 df-mgm 17242 df-sgrp 17284 df-mnd 17295 |
| This theorem is referenced by: mndpsuppfi 42156 |
| Copyright terms: Public domain | W3C validator |