![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wlkwwlkbij2 | Structured version Visualization version GIF version |
Description: There is a bijection between the set of walks of a fixed length, starting at a fixed vertex, and the set of walks represented as words of the same length, starting at the same vertex. (Contributed by Alexander van der Vekens, 22-Jul-2018.) (Revised by AV, 16-Apr-2021.) |
Ref | Expression |
---|---|
wlkwwlkbij2 | ⊢ ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → ∃𝑓 𝑓:{𝑝 ∈ (Walks‘𝐺) ∣ ((#‘(1st ‘𝑝)) = 𝑁 ∧ ((2nd ‘𝑝)‘0) = 𝑃)}–1-1-onto→{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6201 | . . 3 ⊢ (Walks‘𝐺) ∈ V | |
2 | 1 | mptrabex 6488 | . 2 ⊢ (𝑥 ∈ {𝑡 ∈ (Walks‘𝐺) ∣ ((#‘(1st ‘𝑡)) = 𝑁 ∧ ((2nd ‘𝑡)‘0) = 𝑃)} ↦ (2nd ‘𝑥)) ∈ V |
3 | fveq2 6191 | . . . . . . 7 ⊢ (𝑝 = 𝑢 → (1st ‘𝑝) = (1st ‘𝑢)) | |
4 | 3 | fveq2d 6195 | . . . . . 6 ⊢ (𝑝 = 𝑢 → (#‘(1st ‘𝑝)) = (#‘(1st ‘𝑢))) |
5 | 4 | eqeq1d 2624 | . . . . 5 ⊢ (𝑝 = 𝑢 → ((#‘(1st ‘𝑝)) = 𝑁 ↔ (#‘(1st ‘𝑢)) = 𝑁)) |
6 | fveq2 6191 | . . . . . . 7 ⊢ (𝑝 = 𝑢 → (2nd ‘𝑝) = (2nd ‘𝑢)) | |
7 | 6 | fveq1d 6193 | . . . . . 6 ⊢ (𝑝 = 𝑢 → ((2nd ‘𝑝)‘0) = ((2nd ‘𝑢)‘0)) |
8 | 7 | eqeq1d 2624 | . . . . 5 ⊢ (𝑝 = 𝑢 → (((2nd ‘𝑝)‘0) = 𝑃 ↔ ((2nd ‘𝑢)‘0) = 𝑃)) |
9 | 5, 8 | anbi12d 747 | . . . 4 ⊢ (𝑝 = 𝑢 → (((#‘(1st ‘𝑝)) = 𝑁 ∧ ((2nd ‘𝑝)‘0) = 𝑃) ↔ ((#‘(1st ‘𝑢)) = 𝑁 ∧ ((2nd ‘𝑢)‘0) = 𝑃))) |
10 | 9 | cbvrabv 3199 | . . 3 ⊢ {𝑝 ∈ (Walks‘𝐺) ∣ ((#‘(1st ‘𝑝)) = 𝑁 ∧ ((2nd ‘𝑝)‘0) = 𝑃)} = {𝑢 ∈ (Walks‘𝐺) ∣ ((#‘(1st ‘𝑢)) = 𝑁 ∧ ((2nd ‘𝑢)‘0) = 𝑃)} |
11 | fveq1 6190 | . . . . 5 ⊢ (𝑤 = 𝑠 → (𝑤‘0) = (𝑠‘0)) | |
12 | 11 | eqeq1d 2624 | . . . 4 ⊢ (𝑤 = 𝑠 → ((𝑤‘0) = 𝑃 ↔ (𝑠‘0) = 𝑃)) |
13 | 12 | cbvrabv 3199 | . . 3 ⊢ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} = {𝑠 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑠‘0) = 𝑃} |
14 | fveq2 6191 | . . . . . . . 8 ⊢ (𝑡 = 𝑝 → (1st ‘𝑡) = (1st ‘𝑝)) | |
15 | 14 | fveq2d 6195 | . . . . . . 7 ⊢ (𝑡 = 𝑝 → (#‘(1st ‘𝑡)) = (#‘(1st ‘𝑝))) |
16 | 15 | eqeq1d 2624 | . . . . . 6 ⊢ (𝑡 = 𝑝 → ((#‘(1st ‘𝑡)) = 𝑁 ↔ (#‘(1st ‘𝑝)) = 𝑁)) |
17 | fveq2 6191 | . . . . . . . 8 ⊢ (𝑡 = 𝑝 → (2nd ‘𝑡) = (2nd ‘𝑝)) | |
18 | 17 | fveq1d 6193 | . . . . . . 7 ⊢ (𝑡 = 𝑝 → ((2nd ‘𝑡)‘0) = ((2nd ‘𝑝)‘0)) |
19 | 18 | eqeq1d 2624 | . . . . . 6 ⊢ (𝑡 = 𝑝 → (((2nd ‘𝑡)‘0) = 𝑃 ↔ ((2nd ‘𝑝)‘0) = 𝑃)) |
20 | 16, 19 | anbi12d 747 | . . . . 5 ⊢ (𝑡 = 𝑝 → (((#‘(1st ‘𝑡)) = 𝑁 ∧ ((2nd ‘𝑡)‘0) = 𝑃) ↔ ((#‘(1st ‘𝑝)) = 𝑁 ∧ ((2nd ‘𝑝)‘0) = 𝑃))) |
21 | 20 | cbvrabv 3199 | . . . 4 ⊢ {𝑡 ∈ (Walks‘𝐺) ∣ ((#‘(1st ‘𝑡)) = 𝑁 ∧ ((2nd ‘𝑡)‘0) = 𝑃)} = {𝑝 ∈ (Walks‘𝐺) ∣ ((#‘(1st ‘𝑝)) = 𝑁 ∧ ((2nd ‘𝑝)‘0) = 𝑃)} |
22 | 21 | mpteq1i 4739 | . . 3 ⊢ (𝑥 ∈ {𝑡 ∈ (Walks‘𝐺) ∣ ((#‘(1st ‘𝑡)) = 𝑁 ∧ ((2nd ‘𝑡)‘0) = 𝑃)} ↦ (2nd ‘𝑥)) = (𝑥 ∈ {𝑝 ∈ (Walks‘𝐺) ∣ ((#‘(1st ‘𝑝)) = 𝑁 ∧ ((2nd ‘𝑝)‘0) = 𝑃)} ↦ (2nd ‘𝑥)) |
23 | 10, 13, 22 | wlkwwlkbij 26784 | . 2 ⊢ ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑥 ∈ {𝑡 ∈ (Walks‘𝐺) ∣ ((#‘(1st ‘𝑡)) = 𝑁 ∧ ((2nd ‘𝑡)‘0) = 𝑃)} ↦ (2nd ‘𝑥)):{𝑝 ∈ (Walks‘𝐺) ∣ ((#‘(1st ‘𝑝)) = 𝑁 ∧ ((2nd ‘𝑝)‘0) = 𝑃)}–1-1-onto→{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) |
24 | f1oeq1 6127 | . . 3 ⊢ (𝑓 = (𝑥 ∈ {𝑡 ∈ (Walks‘𝐺) ∣ ((#‘(1st ‘𝑡)) = 𝑁 ∧ ((2nd ‘𝑡)‘0) = 𝑃)} ↦ (2nd ‘𝑥)) → (𝑓:{𝑝 ∈ (Walks‘𝐺) ∣ ((#‘(1st ‘𝑝)) = 𝑁 ∧ ((2nd ‘𝑝)‘0) = 𝑃)}–1-1-onto→{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} ↔ (𝑥 ∈ {𝑡 ∈ (Walks‘𝐺) ∣ ((#‘(1st ‘𝑡)) = 𝑁 ∧ ((2nd ‘𝑡)‘0) = 𝑃)} ↦ (2nd ‘𝑥)):{𝑝 ∈ (Walks‘𝐺) ∣ ((#‘(1st ‘𝑝)) = 𝑁 ∧ ((2nd ‘𝑝)‘0) = 𝑃)}–1-1-onto→{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃})) | |
25 | 24 | spcegv 3294 | . 2 ⊢ ((𝑥 ∈ {𝑡 ∈ (Walks‘𝐺) ∣ ((#‘(1st ‘𝑡)) = 𝑁 ∧ ((2nd ‘𝑡)‘0) = 𝑃)} ↦ (2nd ‘𝑥)) ∈ V → ((𝑥 ∈ {𝑡 ∈ (Walks‘𝐺) ∣ ((#‘(1st ‘𝑡)) = 𝑁 ∧ ((2nd ‘𝑡)‘0) = 𝑃)} ↦ (2nd ‘𝑥)):{𝑝 ∈ (Walks‘𝐺) ∣ ((#‘(1st ‘𝑝)) = 𝑁 ∧ ((2nd ‘𝑝)‘0) = 𝑃)}–1-1-onto→{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} → ∃𝑓 𝑓:{𝑝 ∈ (Walks‘𝐺) ∣ ((#‘(1st ‘𝑝)) = 𝑁 ∧ ((2nd ‘𝑝)‘0) = 𝑃)}–1-1-onto→{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃})) |
26 | 2, 23, 25 | mpsyl 68 | 1 ⊢ ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → ∃𝑓 𝑓:{𝑝 ∈ (Walks‘𝐺) ∣ ((#‘(1st ‘𝑝)) = 𝑁 ∧ ((2nd ‘𝑝)‘0) = 𝑃)}–1-1-onto→{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∃wex 1704 ∈ wcel 1990 {crab 2916 Vcvv 3200 ↦ cmpt 4729 –1-1-onto→wf1o 5887 ‘cfv 5888 (class class class)co 6650 1st c1st 7166 2nd c2nd 7167 0cc0 9936 ℕ0cn0 11292 #chash 13117 USPGraph cuspgr 26043 Walkscwlks 26492 WWalksN cwwlksn 26718 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ifp 1013 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-oadd 7564 df-er 7742 df-map 7859 df-pm 7860 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-card 8765 df-cda 8990 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-n0 11293 df-xnn0 11364 df-z 11378 df-uz 11688 df-fz 12327 df-fzo 12466 df-hash 13118 df-word 13299 df-edg 25940 df-uhgr 25953 df-upgr 25977 df-uspgr 26045 df-wlks 26495 df-wwlks 26722 df-wwlksn 26723 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |