| Step | Hyp | Ref
| Expression |
| 1 | | mplmon.s |
. . 3
⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| 2 | | mplmon.b |
. . 3
⊢ 𝐵 = (Base‘𝑃) |
| 3 | | eqid 2622 |
. . 3
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 4 | | mplmonmul.t |
. . 3
⊢ · =
(.r‘𝑃) |
| 5 | | mplmon.d |
. . 3
⊢ 𝐷 = {𝑓 ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈
Fin} |
| 6 | | mplmon.z |
. . . 4
⊢ 0 =
(0g‘𝑅) |
| 7 | | mplmon.o |
. . . 4
⊢ 1 =
(1r‘𝑅) |
| 8 | | mplmon.i |
. . . 4
⊢ (𝜑 → 𝐼 ∈ 𝑊) |
| 9 | | mplmon.r |
. . . 4
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 10 | | mplmon.x |
. . . 4
⊢ (𝜑 → 𝑋 ∈ 𝐷) |
| 11 | 1, 2, 6, 7, 5, 8, 9, 10 | mplmon 19463 |
. . 3
⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ 𝐵) |
| 12 | | mplmonmul.x |
. . . 4
⊢ (𝜑 → 𝑌 ∈ 𝐷) |
| 13 | 1, 2, 6, 7, 5, 8, 9, 12 | mplmon 19463 |
. . 3
⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 )) ∈ 𝐵) |
| 14 | 1, 2, 3, 4, 5, 11,
13 | mplmul 19443 |
. 2
⊢ (𝜑 → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))) = (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘𝑓
− 𝑗))))))) |
| 15 | | eqeq1 2626 |
. . . . 5
⊢ (𝑦 = 𝑘 → (𝑦 = (𝑋 ∘𝑓 + 𝑌) ↔ 𝑘 = (𝑋 ∘𝑓 + 𝑌))) |
| 16 | 15 | ifbid 4108 |
. . . 4
⊢ (𝑦 = 𝑘 → if(𝑦 = (𝑋 ∘𝑓 + 𝑌), 1 , 0 ) = if(𝑘 = (𝑋 ∘𝑓 + 𝑌), 1 , 0 )) |
| 17 | 16 | cbvmptv 4750 |
. . 3
⊢ (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑋 ∘𝑓 + 𝑌), 1 , 0 )) = (𝑘 ∈ 𝐷 ↦ if(𝑘 = (𝑋 ∘𝑓 + 𝑌), 1 , 0 )) |
| 18 | | simpr 477 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘}) → 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘}) |
| 19 | 18 | snssd 4340 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘}) → {𝑋} ⊆ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘}) |
| 20 | 19 | resmptd 5452 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘}) → ((𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘𝑓
− 𝑗)))) ↾
{𝑋}) = (𝑗 ∈ {𝑋} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘𝑓
− 𝑗))))) |
| 21 | 20 | oveq2d 6666 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘}) → (𝑅 Σg ((𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘𝑓
− 𝑗)))) ↾
{𝑋})) = (𝑅 Σg (𝑗 ∈ {𝑋} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘𝑓
− 𝑗)))))) |
| 22 | 9 | ad2antrr 762 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘}) → 𝑅 ∈ Ring) |
| 23 | | ringmnd 18556 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mnd) |
| 24 | 22, 23 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘}) → 𝑅 ∈ Mnd) |
| 25 | 10 | ad2antrr 762 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘}) → 𝑋 ∈ 𝐷) |
| 26 | | iftrue 4092 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑋 → if(𝑦 = 𝑋, 1 , 0 ) = 1 ) |
| 27 | | eqid 2622 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) |
| 28 | | fvex 6201 |
. . . . . . . . . . . . . 14
⊢
(1r‘𝑅) ∈ V |
| 29 | 7, 28 | eqeltri 2697 |
. . . . . . . . . . . . 13
⊢ 1 ∈
V |
| 30 | 26, 27, 29 | fvmpt 6282 |
. . . . . . . . . . . 12
⊢ (𝑋 ∈ 𝐷 → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑋) = 1 ) |
| 31 | 25, 30 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘}) → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑋) = 1 ) |
| 32 | | ssrab2 3687 |
. . . . . . . . . . . . 13
⊢ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘} ⊆ 𝐷 |
| 33 | 8 | ad2antrr 762 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘}) → 𝐼 ∈ 𝑊) |
| 34 | | simplr 792 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘}) → 𝑘 ∈ 𝐷) |
| 35 | | eqid 2622 |
. . . . . . . . . . . . . . 15
⊢ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘} = {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘} |
| 36 | 5, 35 | psrbagconcl 19373 |
. . . . . . . . . . . . . 14
⊢ ((𝐼 ∈ 𝑊 ∧ 𝑘 ∈ 𝐷 ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘}) → (𝑘 ∘𝑓 − 𝑋) ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘}) |
| 37 | 33, 34, 18, 36 | syl3anc 1326 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘}) → (𝑘 ∘𝑓 − 𝑋) ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘}) |
| 38 | 32, 37 | sseldi 3601 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘}) → (𝑘 ∘𝑓 − 𝑋) ∈ 𝐷) |
| 39 | | eqeq1 2626 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = (𝑘 ∘𝑓 − 𝑋) → (𝑦 = 𝑌 ↔ (𝑘 ∘𝑓 − 𝑋) = 𝑌)) |
| 40 | 39 | ifbid 4108 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (𝑘 ∘𝑓 − 𝑋) → if(𝑦 = 𝑌, 1 , 0 ) = if((𝑘 ∘𝑓 − 𝑋) = 𝑌, 1 , 0 )) |
| 41 | | eqid 2622 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 )) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 )) |
| 42 | | fvex 6201 |
. . . . . . . . . . . . . . 15
⊢
(0g‘𝑅) ∈ V |
| 43 | 6, 42 | eqeltri 2697 |
. . . . . . . . . . . . . 14
⊢ 0 ∈
V |
| 44 | 29, 43 | ifex 4156 |
. . . . . . . . . . . . 13
⊢ if((𝑘 ∘𝑓
− 𝑋) = 𝑌, 1 , 0 ) ∈
V |
| 45 | 40, 41, 44 | fvmpt 6282 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∘𝑓
− 𝑋) ∈ 𝐷 → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘𝑓
− 𝑋)) = if((𝑘 ∘𝑓
− 𝑋) = 𝑌, 1 , 0 )) |
| 46 | 38, 45 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘}) → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘𝑓
− 𝑋)) = if((𝑘 ∘𝑓
− 𝑋) = 𝑌, 1 , 0 )) |
| 47 | 31, 46 | oveq12d 6668 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘}) → (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑋)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘𝑓
− 𝑋))) = ( 1
(.r‘𝑅)if((𝑘 ∘𝑓 − 𝑋) = 𝑌, 1 , 0 ))) |
| 48 | | eqid 2622 |
. . . . . . . . . . . . . 14
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 49 | 48, 7 | ringidcl 18568 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ Ring → 1 ∈
(Base‘𝑅)) |
| 50 | 48, 6 | ring0cl 18569 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ Ring → 0 ∈
(Base‘𝑅)) |
| 51 | 49, 50 | ifcld 4131 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ Ring → if((𝑘 ∘𝑓
− 𝑋) = 𝑌, 1 , 0 ) ∈ (Base‘𝑅)) |
| 52 | 22, 51 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘}) → if((𝑘 ∘𝑓 − 𝑋) = 𝑌, 1 , 0 ) ∈ (Base‘𝑅)) |
| 53 | 48, 3, 7 | ringlidm 18571 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Ring ∧ if((𝑘 ∘𝑓
− 𝑋) = 𝑌, 1 , 0 ) ∈ (Base‘𝑅)) → ( 1 (.r‘𝑅)if((𝑘 ∘𝑓 − 𝑋) = 𝑌, 1 , 0 )) = if((𝑘 ∘𝑓
− 𝑋) = 𝑌, 1 , 0 )) |
| 54 | 22, 52, 53 | syl2anc 693 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘}) → ( 1 (.r‘𝑅)if((𝑘 ∘𝑓 − 𝑋) = 𝑌, 1 , 0 )) = if((𝑘 ∘𝑓
− 𝑋) = 𝑌, 1 , 0 )) |
| 55 | 5 | psrbagf 19365 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐼 ∈ 𝑊 ∧ 𝑘 ∈ 𝐷) → 𝑘:𝐼⟶ℕ0) |
| 56 | 33, 34, 55 | syl2anc 693 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘}) → 𝑘:𝐼⟶ℕ0) |
| 57 | 56 | ffvelrnda 6359 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘}) ∧ 𝑧 ∈ 𝐼) → (𝑘‘𝑧) ∈
ℕ0) |
| 58 | 8 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → 𝐼 ∈ 𝑊) |
| 59 | 10 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → 𝑋 ∈ 𝐷) |
| 60 | 5 | psrbagf 19365 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐷) → 𝑋:𝐼⟶ℕ0) |
| 61 | 58, 59, 60 | syl2anc 693 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → 𝑋:𝐼⟶ℕ0) |
| 62 | 61 | ffvelrnda 6359 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑧 ∈ 𝐼) → (𝑋‘𝑧) ∈
ℕ0) |
| 63 | 62 | adantlr 751 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘}) ∧ 𝑧 ∈ 𝐼) → (𝑋‘𝑧) ∈
ℕ0) |
| 64 | 5 | psrbagf 19365 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐼 ∈ 𝑊 ∧ 𝑌 ∈ 𝐷) → 𝑌:𝐼⟶ℕ0) |
| 65 | 8, 12, 64 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑌:𝐼⟶ℕ0) |
| 66 | 65 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → 𝑌:𝐼⟶ℕ0) |
| 67 | 66 | ffvelrnda 6359 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑧 ∈ 𝐼) → (𝑌‘𝑧) ∈
ℕ0) |
| 68 | 67 | adantlr 751 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘}) ∧ 𝑧 ∈ 𝐼) → (𝑌‘𝑧) ∈
ℕ0) |
| 69 | | nn0cn 11302 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑘‘𝑧) ∈ ℕ0 → (𝑘‘𝑧) ∈ ℂ) |
| 70 | | nn0cn 11302 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑋‘𝑧) ∈ ℕ0 → (𝑋‘𝑧) ∈ ℂ) |
| 71 | | nn0cn 11302 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑌‘𝑧) ∈ ℕ0 → (𝑌‘𝑧) ∈ ℂ) |
| 72 | | subadd 10284 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑘‘𝑧) ∈ ℂ ∧ (𝑋‘𝑧) ∈ ℂ ∧ (𝑌‘𝑧) ∈ ℂ) → (((𝑘‘𝑧) − (𝑋‘𝑧)) = (𝑌‘𝑧) ↔ ((𝑋‘𝑧) + (𝑌‘𝑧)) = (𝑘‘𝑧))) |
| 73 | 69, 70, 71, 72 | syl3an 1368 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑘‘𝑧) ∈ ℕ0 ∧ (𝑋‘𝑧) ∈ ℕ0 ∧ (𝑌‘𝑧) ∈ ℕ0) → (((𝑘‘𝑧) − (𝑋‘𝑧)) = (𝑌‘𝑧) ↔ ((𝑋‘𝑧) + (𝑌‘𝑧)) = (𝑘‘𝑧))) |
| 74 | 57, 63, 68, 73 | syl3anc 1326 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘}) ∧ 𝑧 ∈ 𝐼) → (((𝑘‘𝑧) − (𝑋‘𝑧)) = (𝑌‘𝑧) ↔ ((𝑋‘𝑧) + (𝑌‘𝑧)) = (𝑘‘𝑧))) |
| 75 | | eqcom 2629 |
. . . . . . . . . . . . . . 15
⊢ (((𝑋‘𝑧) + (𝑌‘𝑧)) = (𝑘‘𝑧) ↔ (𝑘‘𝑧) = ((𝑋‘𝑧) + (𝑌‘𝑧))) |
| 76 | 74, 75 | syl6bb 276 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘}) ∧ 𝑧 ∈ 𝐼) → (((𝑘‘𝑧) − (𝑋‘𝑧)) = (𝑌‘𝑧) ↔ (𝑘‘𝑧) = ((𝑋‘𝑧) + (𝑌‘𝑧)))) |
| 77 | 76 | ralbidva 2985 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘}) → (∀𝑧 ∈ 𝐼 ((𝑘‘𝑧) − (𝑋‘𝑧)) = (𝑌‘𝑧) ↔ ∀𝑧 ∈ 𝐼 (𝑘‘𝑧) = ((𝑋‘𝑧) + (𝑌‘𝑧)))) |
| 78 | | mpteqb 6299 |
. . . . . . . . . . . . . 14
⊢
(∀𝑧 ∈
𝐼 ((𝑘‘𝑧) − (𝑋‘𝑧)) ∈ V → ((𝑧 ∈ 𝐼 ↦ ((𝑘‘𝑧) − (𝑋‘𝑧))) = (𝑧 ∈ 𝐼 ↦ (𝑌‘𝑧)) ↔ ∀𝑧 ∈ 𝐼 ((𝑘‘𝑧) − (𝑋‘𝑧)) = (𝑌‘𝑧))) |
| 79 | | ovexd 6680 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ 𝐼 → ((𝑘‘𝑧) − (𝑋‘𝑧)) ∈ V) |
| 80 | 78, 79 | mprg 2926 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ 𝐼 ↦ ((𝑘‘𝑧) − (𝑋‘𝑧))) = (𝑧 ∈ 𝐼 ↦ (𝑌‘𝑧)) ↔ ∀𝑧 ∈ 𝐼 ((𝑘‘𝑧) − (𝑋‘𝑧)) = (𝑌‘𝑧)) |
| 81 | | mpteqb 6299 |
. . . . . . . . . . . . . 14
⊢
(∀𝑧 ∈
𝐼 (𝑘‘𝑧) ∈ V → ((𝑧 ∈ 𝐼 ↦ (𝑘‘𝑧)) = (𝑧 ∈ 𝐼 ↦ ((𝑋‘𝑧) + (𝑌‘𝑧))) ↔ ∀𝑧 ∈ 𝐼 (𝑘‘𝑧) = ((𝑋‘𝑧) + (𝑌‘𝑧)))) |
| 82 | | fvex 6201 |
. . . . . . . . . . . . . . 15
⊢ (𝑘‘𝑧) ∈ V |
| 83 | 82 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ 𝐼 → (𝑘‘𝑧) ∈ V) |
| 84 | 81, 83 | mprg 2926 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ 𝐼 ↦ (𝑘‘𝑧)) = (𝑧 ∈ 𝐼 ↦ ((𝑋‘𝑧) + (𝑌‘𝑧))) ↔ ∀𝑧 ∈ 𝐼 (𝑘‘𝑧) = ((𝑋‘𝑧) + (𝑌‘𝑧))) |
| 85 | 77, 80, 84 | 3bitr4g 303 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘}) → ((𝑧 ∈ 𝐼 ↦ ((𝑘‘𝑧) − (𝑋‘𝑧))) = (𝑧 ∈ 𝐼 ↦ (𝑌‘𝑧)) ↔ (𝑧 ∈ 𝐼 ↦ (𝑘‘𝑧)) = (𝑧 ∈ 𝐼 ↦ ((𝑋‘𝑧) + (𝑌‘𝑧))))) |
| 86 | 56 | feqmptd 6249 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘}) → 𝑘 = (𝑧 ∈ 𝐼 ↦ (𝑘‘𝑧))) |
| 87 | 61 | feqmptd 6249 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → 𝑋 = (𝑧 ∈ 𝐼 ↦ (𝑋‘𝑧))) |
| 88 | 87 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘}) → 𝑋 = (𝑧 ∈ 𝐼 ↦ (𝑋‘𝑧))) |
| 89 | 33, 57, 63, 86, 88 | offval2 6914 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘}) → (𝑘 ∘𝑓 − 𝑋) = (𝑧 ∈ 𝐼 ↦ ((𝑘‘𝑧) − (𝑋‘𝑧)))) |
| 90 | 66 | feqmptd 6249 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → 𝑌 = (𝑧 ∈ 𝐼 ↦ (𝑌‘𝑧))) |
| 91 | 90 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘}) → 𝑌 = (𝑧 ∈ 𝐼 ↦ (𝑌‘𝑧))) |
| 92 | 89, 91 | eqeq12d 2637 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘}) → ((𝑘 ∘𝑓 − 𝑋) = 𝑌 ↔ (𝑧 ∈ 𝐼 ↦ ((𝑘‘𝑧) − (𝑋‘𝑧))) = (𝑧 ∈ 𝐼 ↦ (𝑌‘𝑧)))) |
| 93 | 58, 62, 67, 87, 90 | offval2 6914 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → (𝑋 ∘𝑓 + 𝑌) = (𝑧 ∈ 𝐼 ↦ ((𝑋‘𝑧) + (𝑌‘𝑧)))) |
| 94 | 93 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘}) → (𝑋 ∘𝑓 + 𝑌) = (𝑧 ∈ 𝐼 ↦ ((𝑋‘𝑧) + (𝑌‘𝑧)))) |
| 95 | 86, 94 | eqeq12d 2637 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘}) → (𝑘 = (𝑋 ∘𝑓 + 𝑌) ↔ (𝑧 ∈ 𝐼 ↦ (𝑘‘𝑧)) = (𝑧 ∈ 𝐼 ↦ ((𝑋‘𝑧) + (𝑌‘𝑧))))) |
| 96 | 85, 92, 95 | 3bitr4d 300 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘}) → ((𝑘 ∘𝑓 − 𝑋) = 𝑌 ↔ 𝑘 = (𝑋 ∘𝑓 + 𝑌))) |
| 97 | 96 | ifbid 4108 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘}) → if((𝑘 ∘𝑓 − 𝑋) = 𝑌, 1 , 0 ) = if(𝑘 = (𝑋 ∘𝑓 + 𝑌), 1 , 0 )) |
| 98 | 47, 54, 97 | 3eqtrd 2660 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘}) → (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑋)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘𝑓
− 𝑋))) = if(𝑘 = (𝑋 ∘𝑓 + 𝑌), 1 , 0 )) |
| 99 | 97, 52 | eqeltrrd 2702 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘}) → if(𝑘 = (𝑋 ∘𝑓 + 𝑌), 1 , 0 ) ∈ (Base‘𝑅)) |
| 100 | 98, 99 | eqeltrd 2701 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘}) → (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑋)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘𝑓
− 𝑋))) ∈
(Base‘𝑅)) |
| 101 | | fveq2 6191 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑋 → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗) = ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑋)) |
| 102 | | oveq2 6658 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑋 → (𝑘 ∘𝑓 − 𝑗) = (𝑘 ∘𝑓 − 𝑋)) |
| 103 | 102 | fveq2d 6195 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑋 → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘𝑓
− 𝑗)) = ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘𝑓
− 𝑋))) |
| 104 | 101, 103 | oveq12d 6668 |
. . . . . . . . 9
⊢ (𝑗 = 𝑋 → (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘𝑓
− 𝑗))) = (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑋)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘𝑓
− 𝑋)))) |
| 105 | 48, 104 | gsumsn 18354 |
. . . . . . . 8
⊢ ((𝑅 ∈ Mnd ∧ 𝑋 ∈ 𝐷 ∧ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑋)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘𝑓
− 𝑋))) ∈
(Base‘𝑅)) →
(𝑅
Σg (𝑗 ∈ {𝑋} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘𝑓
− 𝑗))))) = (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑋)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘𝑓
− 𝑋)))) |
| 106 | 24, 25, 100, 105 | syl3anc 1326 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘}) → (𝑅 Σg (𝑗 ∈ {𝑋} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘𝑓
− 𝑗))))) = (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑋)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘𝑓
− 𝑋)))) |
| 107 | 21, 106, 98 | 3eqtrd 2660 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘}) → (𝑅 Σg ((𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘𝑓
− 𝑗)))) ↾
{𝑋})) = if(𝑘 = (𝑋 ∘𝑓 + 𝑌), 1 , 0 )) |
| 108 | 6 | gsum0 17278 |
. . . . . . 7
⊢ (𝑅 Σg
∅) = 0 |
| 109 | | disjsn 4246 |
. . . . . . . . 9
⊢ (({𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘} ∩ {𝑋}) = ∅ ↔ ¬ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘}) |
| 110 | 9 | ad2antrr 762 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘}) → 𝑅 ∈ Ring) |
| 111 | 1, 48, 2, 5, 11 | mplelf 19433 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )):𝐷⟶(Base‘𝑅)) |
| 112 | 111 | ad2antrr 762 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘}) → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )):𝐷⟶(Base‘𝑅)) |
| 113 | | simpr 477 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘}) → 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘}) |
| 114 | 32, 113 | sseldi 3601 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘}) → 𝑗 ∈ 𝐷) |
| 115 | 112, 114 | ffvelrnd 6360 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘}) → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗) ∈ (Base‘𝑅)) |
| 116 | 1, 48, 2, 5, 13 | mplelf 19433 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 )):𝐷⟶(Base‘𝑅)) |
| 117 | 116 | ad2antrr 762 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘}) → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 )):𝐷⟶(Base‘𝑅)) |
| 118 | 8 | ad2antrr 762 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘}) → 𝐼 ∈ 𝑊) |
| 119 | | simplr 792 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘}) → 𝑘 ∈ 𝐷) |
| 120 | 5, 35 | psrbagconcl 19373 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐼 ∈ 𝑊 ∧ 𝑘 ∈ 𝐷 ∧ 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘}) → (𝑘 ∘𝑓 − 𝑗) ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘}) |
| 121 | 118, 119,
113, 120 | syl3anc 1326 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘}) → (𝑘 ∘𝑓 − 𝑗) ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘}) |
| 122 | 32, 121 | sseldi 3601 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘}) → (𝑘 ∘𝑓 − 𝑗) ∈ 𝐷) |
| 123 | 117, 122 | ffvelrnd 6360 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘}) → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘𝑓
− 𝑗)) ∈
(Base‘𝑅)) |
| 124 | 48, 3 | ringcl 18561 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ Ring ∧ ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗) ∈ (Base‘𝑅) ∧ ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘𝑓
− 𝑗)) ∈
(Base‘𝑅)) →
(((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘𝑓
− 𝑗))) ∈
(Base‘𝑅)) |
| 125 | 110, 115,
123, 124 | syl3anc 1326 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘}) → (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘𝑓
− 𝑗))) ∈
(Base‘𝑅)) |
| 126 | | eqid 2622 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘𝑓
− 𝑗)))) = (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘𝑓
− 𝑗)))) |
| 127 | 125, 126 | fmptd 6385 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘𝑓
− 𝑗)))):{𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘}⟶(Base‘𝑅)) |
| 128 | | ffn 6045 |
. . . . . . . . . . 11
⊢ ((𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘𝑓
− 𝑗)))):{𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘}⟶(Base‘𝑅) → (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘𝑓
− 𝑗)))) Fn {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘}) |
| 129 | | fnresdisj 6001 |
. . . . . . . . . . 11
⊢ ((𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘𝑓
− 𝑗)))) Fn {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘} → (({𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘} ∩ {𝑋}) = ∅ ↔ ((𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘𝑓
− 𝑗)))) ↾
{𝑋}) =
∅)) |
| 130 | 127, 128,
129 | 3syl 18 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → (({𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘} ∩ {𝑋}) = ∅ ↔ ((𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘𝑓
− 𝑗)))) ↾
{𝑋}) =
∅)) |
| 131 | 130 | biimpa 501 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ ({𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘} ∩ {𝑋}) = ∅) → ((𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘𝑓
− 𝑗)))) ↾
{𝑋}) =
∅) |
| 132 | 109, 131 | sylan2br 493 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ ¬ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘}) → ((𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘𝑓
− 𝑗)))) ↾
{𝑋}) =
∅) |
| 133 | 132 | oveq2d 6666 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ ¬ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘}) → (𝑅 Σg ((𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘𝑓
− 𝑗)))) ↾
{𝑋})) = (𝑅 Σg
∅)) |
| 134 | 62 | nn0red 11352 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑧 ∈ 𝐼) → (𝑋‘𝑧) ∈ ℝ) |
| 135 | | nn0addge1 11339 |
. . . . . . . . . . . . . 14
⊢ (((𝑋‘𝑧) ∈ ℝ ∧ (𝑌‘𝑧) ∈ ℕ0) → (𝑋‘𝑧) ≤ ((𝑋‘𝑧) + (𝑌‘𝑧))) |
| 136 | 134, 67, 135 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑧 ∈ 𝐼) → (𝑋‘𝑧) ≤ ((𝑋‘𝑧) + (𝑌‘𝑧))) |
| 137 | 136 | ralrimiva 2966 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → ∀𝑧 ∈ 𝐼 (𝑋‘𝑧) ≤ ((𝑋‘𝑧) + (𝑌‘𝑧))) |
| 138 | | ovexd 6680 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑧 ∈ 𝐼) → ((𝑋‘𝑧) + (𝑌‘𝑧)) ∈ V) |
| 139 | 58, 62, 138, 87, 93 | ofrfval2 6915 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → (𝑋 ∘𝑟 ≤ (𝑋 ∘𝑓 +
𝑌) ↔ ∀𝑧 ∈ 𝐼 (𝑋‘𝑧) ≤ ((𝑋‘𝑧) + (𝑌‘𝑧)))) |
| 140 | 137, 139 | mpbird 247 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → 𝑋 ∘𝑟 ≤ (𝑋 ∘𝑓 +
𝑌)) |
| 141 | | breq1 4656 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑋 → (𝑥 ∘𝑟 ≤ (𝑋 ∘𝑓 +
𝑌) ↔ 𝑋 ∘𝑟 ≤ (𝑋 ∘𝑓 +
𝑌))) |
| 142 | 141 | elrab 3363 |
. . . . . . . . . . 11
⊢ (𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ (𝑋 ∘𝑓 +
𝑌)} ↔ (𝑋 ∈ 𝐷 ∧ 𝑋 ∘𝑟 ≤ (𝑋 ∘𝑓 +
𝑌))) |
| 143 | 59, 140, 142 | sylanbrc 698 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ (𝑋 ∘𝑓 +
𝑌)}) |
| 144 | | breq2 4657 |
. . . . . . . . . . . 12
⊢ (𝑘 = (𝑋 ∘𝑓 + 𝑌) → (𝑥 ∘𝑟 ≤ 𝑘 ↔ 𝑥 ∘𝑟 ≤ (𝑋 ∘𝑓 +
𝑌))) |
| 145 | 144 | rabbidv 3189 |
. . . . . . . . . . 11
⊢ (𝑘 = (𝑋 ∘𝑓 + 𝑌) → {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘} = {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ (𝑋 ∘𝑓 +
𝑌)}) |
| 146 | 145 | eleq2d 2687 |
. . . . . . . . . 10
⊢ (𝑘 = (𝑋 ∘𝑓 + 𝑌) → (𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘} ↔ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ (𝑋 ∘𝑓 +
𝑌)})) |
| 147 | 143, 146 | syl5ibrcom 237 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → (𝑘 = (𝑋 ∘𝑓 + 𝑌) → 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘})) |
| 148 | 147 | con3dimp 457 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ ¬ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘}) → ¬ 𝑘 = (𝑋 ∘𝑓 + 𝑌)) |
| 149 | 148 | iffalsed 4097 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ ¬ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘}) → if(𝑘 = (𝑋 ∘𝑓 + 𝑌), 1 , 0 ) = 0 ) |
| 150 | 108, 133,
149 | 3eqtr4a 2682 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ ¬ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘}) → (𝑅 Σg ((𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘𝑓
− 𝑗)))) ↾
{𝑋})) = if(𝑘 = (𝑋 ∘𝑓 + 𝑌), 1 , 0 )) |
| 151 | 107, 150 | pm2.61dan 832 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → (𝑅 Σg ((𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘𝑓
− 𝑗)))) ↾
{𝑋})) = if(𝑘 = (𝑋 ∘𝑓 + 𝑌), 1 , 0 )) |
| 152 | 9 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → 𝑅 ∈ Ring) |
| 153 | | ringcmn 18581 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → 𝑅 ∈ CMnd) |
| 154 | 152, 153 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → 𝑅 ∈ CMnd) |
| 155 | 5 | psrbaglefi 19372 |
. . . . . . 7
⊢ ((𝐼 ∈ 𝑊 ∧ 𝑘 ∈ 𝐷) → {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘} ∈ Fin) |
| 156 | 8, 155 | sylan 488 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘} ∈ Fin) |
| 157 | | ssdif 3745 |
. . . . . . . . . . . 12
⊢ ({𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘} ⊆ 𝐷 → ({𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘} ∖ {𝑋}) ⊆ (𝐷 ∖ {𝑋})) |
| 158 | 32, 157 | ax-mp 5 |
. . . . . . . . . . 11
⊢ ({𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘} ∖ {𝑋}) ⊆ (𝐷 ∖ {𝑋}) |
| 159 | 158 | sseli 3599 |
. . . . . . . . . 10
⊢ (𝑗 ∈ ({𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘} ∖ {𝑋}) → 𝑗 ∈ (𝐷 ∖ {𝑋})) |
| 160 | 111 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )):𝐷⟶(Base‘𝑅)) |
| 161 | | eldifsni 4320 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ (𝐷 ∖ {𝑋}) → 𝑦 ≠ 𝑋) |
| 162 | 161 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑦 ∈ (𝐷 ∖ {𝑋})) → 𝑦 ≠ 𝑋) |
| 163 | 162 | neneqd 2799 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑦 ∈ (𝐷 ∖ {𝑋})) → ¬ 𝑦 = 𝑋) |
| 164 | 163 | iffalsed 4097 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑦 ∈ (𝐷 ∖ {𝑋})) → if(𝑦 = 𝑋, 1 , 0 ) = 0 ) |
| 165 | | ovex 6678 |
. . . . . . . . . . . . . 14
⊢
(ℕ0 ↑𝑚 𝐼) ∈ V |
| 166 | 5, 165 | rabex2 4815 |
. . . . . . . . . . . . 13
⊢ 𝐷 ∈ V |
| 167 | 166 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → 𝐷 ∈ V) |
| 168 | 164, 167 | suppss2 7329 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) supp 0 ) ⊆ {𝑋}) |
| 169 | 43 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → 0 ∈ V) |
| 170 | 160, 168,
167, 169 | suppssr 7326 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑗 ∈ (𝐷 ∖ {𝑋})) → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗) = 0 ) |
| 171 | 159, 170 | sylan2 491 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑗 ∈ ({𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘} ∖ {𝑋})) → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗) = 0 ) |
| 172 | 171 | oveq1d 6665 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑗 ∈ ({𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘} ∖ {𝑋})) → (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘𝑓
− 𝑗))) = ( 0
(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘𝑓
− 𝑗)))) |
| 173 | | eldifi 3732 |
. . . . . . . . 9
⊢ (𝑗 ∈ ({𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘} ∖ {𝑋}) → 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘}) |
| 174 | 48, 3, 6 | ringlz 18587 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘𝑓
− 𝑗)) ∈
(Base‘𝑅)) → (
0
(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘𝑓
− 𝑗))) = 0
) |
| 175 | 110, 123,
174 | syl2anc 693 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘}) → ( 0 (.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘𝑓
− 𝑗))) = 0
) |
| 176 | 173, 175 | sylan2 491 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑗 ∈ ({𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘} ∖ {𝑋})) → ( 0 (.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘𝑓
− 𝑗))) = 0
) |
| 177 | 172, 176 | eqtrd 2656 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑗 ∈ ({𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘} ∖ {𝑋})) → (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘𝑓
− 𝑗))) = 0
) |
| 178 | 166 | rabex 4813 |
. . . . . . . 8
⊢ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘} ∈ V |
| 179 | 178 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘} ∈ V) |
| 180 | 177, 179 | suppss2 7329 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → ((𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘𝑓
− 𝑗)))) supp 0 ) ⊆
{𝑋}) |
| 181 | 166 | mptrabex 6488 |
. . . . . . . . 9
⊢ (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘𝑓
− 𝑗)))) ∈
V |
| 182 | | funmpt 5926 |
. . . . . . . . 9
⊢ Fun
(𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘𝑓
− 𝑗)))) |
| 183 | 181, 182,
43 | 3pm3.2i 1239 |
. . . . . . . 8
⊢ ((𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘𝑓
− 𝑗)))) ∈ V
∧ Fun (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘𝑓
− 𝑗)))) ∧ 0 ∈
V) |
| 184 | 183 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → ((𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘𝑓
− 𝑗)))) ∈ V
∧ Fun (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘𝑓
− 𝑗)))) ∧ 0 ∈
V)) |
| 185 | | snfi 8038 |
. . . . . . . 8
⊢ {𝑋} ∈ Fin |
| 186 | 185 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → {𝑋} ∈ Fin) |
| 187 | | suppssfifsupp 8290 |
. . . . . . 7
⊢ ((((𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘𝑓
− 𝑗)))) ∈ V
∧ Fun (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘𝑓
− 𝑗)))) ∧ 0 ∈ V)
∧ ({𝑋} ∈ Fin ∧
((𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘𝑓
− 𝑗)))) supp 0 ) ⊆
{𝑋})) → (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘𝑓
− 𝑗)))) finSupp 0
) |
| 188 | 184, 186,
180, 187 | syl12anc 1324 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘𝑓
− 𝑗)))) finSupp 0
) |
| 189 | 48, 6, 154, 156, 127, 180, 188 | gsumres 18314 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → (𝑅 Σg ((𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘𝑓
− 𝑗)))) ↾
{𝑋})) = (𝑅 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘𝑓
− 𝑗)))))) |
| 190 | 151, 189 | eqtr3d 2658 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → if(𝑘 = (𝑋 ∘𝑓 + 𝑌), 1 , 0 ) = (𝑅 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘𝑓
− 𝑗)))))) |
| 191 | 190 | mpteq2dva 4744 |
. . 3
⊢ (𝜑 → (𝑘 ∈ 𝐷 ↦ if(𝑘 = (𝑋 ∘𝑓 + 𝑌), 1 , 0 )) = (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘𝑓
− 𝑗))))))) |
| 192 | 17, 191 | syl5eq 2668 |
. 2
⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑋 ∘𝑓 + 𝑌), 1 , 0 )) = (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘𝑟 ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘𝑓
− 𝑗))))))) |
| 193 | 14, 192 | eqtr4d 2659 |
1
⊢ (𝜑 → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑋 ∘𝑓 + 𝑌), 1 , 0 ))) |