MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplmonmul Structured version   Visualization version   GIF version

Theorem mplmonmul 19464
Description: The product of two monomials adds the exponent vectors together. For example, the product of (𝑥↑2)(𝑦↑2) with (𝑦↑1)(𝑧↑3) is (𝑥↑2)(𝑦↑3)(𝑧↑3), where the exponent vectors ⟨2, 2, 0⟩ and ⟨0, 1, 3⟩ are added to give ⟨2, 3, 3⟩. (Contributed by Mario Carneiro, 9-Jan-2015.)
Hypotheses
Ref Expression
mplmon.s 𝑃 = (𝐼 mPoly 𝑅)
mplmon.b 𝐵 = (Base‘𝑃)
mplmon.z 0 = (0g𝑅)
mplmon.o 1 = (1r𝑅)
mplmon.d 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
mplmon.i (𝜑𝐼𝑊)
mplmon.r (𝜑𝑅 ∈ Ring)
mplmon.x (𝜑𝑋𝐷)
mplmonmul.t · = (.r𝑃)
mplmonmul.x (𝜑𝑌𝐷)
Assertion
Ref Expression
mplmonmul (𝜑 → ((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) · (𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))) = (𝑦𝐷 ↦ if(𝑦 = (𝑋𝑓 + 𝑌), 1 , 0 )))
Distinct variable groups:   𝑦,𝐷   𝑓,𝐼   𝜑,𝑦   𝑦,𝑓,𝑋   𝑦, 0   𝑦, 1   𝑦,𝑅   𝑓,𝑌,𝑦
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑦,𝑓)   𝐷(𝑓)   𝑃(𝑦,𝑓)   𝑅(𝑓)   · (𝑦,𝑓)   1 (𝑓)   𝐼(𝑦)   𝑊(𝑦,𝑓)   0 (𝑓)

Proof of Theorem mplmonmul
Dummy variables 𝑗 𝑘 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mplmon.s . . 3 𝑃 = (𝐼 mPoly 𝑅)
2 mplmon.b . . 3 𝐵 = (Base‘𝑃)
3 eqid 2622 . . 3 (.r𝑅) = (.r𝑅)
4 mplmonmul.t . . 3 · = (.r𝑃)
5 mplmon.d . . 3 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
6 mplmon.z . . . 4 0 = (0g𝑅)
7 mplmon.o . . . 4 1 = (1r𝑅)
8 mplmon.i . . . 4 (𝜑𝐼𝑊)
9 mplmon.r . . . 4 (𝜑𝑅 ∈ Ring)
10 mplmon.x . . . 4 (𝜑𝑋𝐷)
111, 2, 6, 7, 5, 8, 9, 10mplmon 19463 . . 3 (𝜑 → (𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ 𝐵)
12 mplmonmul.x . . . 4 (𝜑𝑌𝐷)
131, 2, 6, 7, 5, 8, 9, 12mplmon 19463 . . 3 (𝜑 → (𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 )) ∈ 𝐵)
141, 2, 3, 4, 5, 11, 13mplmul 19443 . 2 (𝜑 → ((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) · (𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))) = (𝑘𝐷 ↦ (𝑅 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗)))))))
15 eqeq1 2626 . . . . 5 (𝑦 = 𝑘 → (𝑦 = (𝑋𝑓 + 𝑌) ↔ 𝑘 = (𝑋𝑓 + 𝑌)))
1615ifbid 4108 . . . 4 (𝑦 = 𝑘 → if(𝑦 = (𝑋𝑓 + 𝑌), 1 , 0 ) = if(𝑘 = (𝑋𝑓 + 𝑌), 1 , 0 ))
1716cbvmptv 4750 . . 3 (𝑦𝐷 ↦ if(𝑦 = (𝑋𝑓 + 𝑌), 1 , 0 )) = (𝑘𝐷 ↦ if(𝑘 = (𝑋𝑓 + 𝑌), 1 , 0 ))
18 simpr 477 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) → 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘})
1918snssd 4340 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) → {𝑋} ⊆ {𝑥𝐷𝑥𝑟𝑘})
2019resmptd 5452 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) → ((𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗)))) ↾ {𝑋}) = (𝑗 ∈ {𝑋} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗)))))
2120oveq2d 6666 . . . . . . 7 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) → (𝑅 Σg ((𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗)))) ↾ {𝑋})) = (𝑅 Σg (𝑗 ∈ {𝑋} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗))))))
229ad2antrr 762 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) → 𝑅 ∈ Ring)
23 ringmnd 18556 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
2422, 23syl 17 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) → 𝑅 ∈ Mnd)
2510ad2antrr 762 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) → 𝑋𝐷)
26 iftrue 4092 . . . . . . . . . . . . 13 (𝑦 = 𝑋 → if(𝑦 = 𝑋, 1 , 0 ) = 1 )
27 eqid 2622 . . . . . . . . . . . . 13 (𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) = (𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))
28 fvex 6201 . . . . . . . . . . . . . 14 (1r𝑅) ∈ V
297, 28eqeltri 2697 . . . . . . . . . . . . 13 1 ∈ V
3026, 27, 29fvmpt 6282 . . . . . . . . . . . 12 (𝑋𝐷 → ((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑋) = 1 )
3125, 30syl 17 . . . . . . . . . . 11 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) → ((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑋) = 1 )
32 ssrab2 3687 . . . . . . . . . . . . 13 {𝑥𝐷𝑥𝑟𝑘} ⊆ 𝐷
338ad2antrr 762 . . . . . . . . . . . . . 14 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) → 𝐼𝑊)
34 simplr 792 . . . . . . . . . . . . . 14 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) → 𝑘𝐷)
35 eqid 2622 . . . . . . . . . . . . . . 15 {𝑥𝐷𝑥𝑟𝑘} = {𝑥𝐷𝑥𝑟𝑘}
365, 35psrbagconcl 19373 . . . . . . . . . . . . . 14 ((𝐼𝑊𝑘𝐷𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) → (𝑘𝑓𝑋) ∈ {𝑥𝐷𝑥𝑟𝑘})
3733, 34, 18, 36syl3anc 1326 . . . . . . . . . . . . 13 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) → (𝑘𝑓𝑋) ∈ {𝑥𝐷𝑥𝑟𝑘})
3832, 37sseldi 3601 . . . . . . . . . . . 12 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) → (𝑘𝑓𝑋) ∈ 𝐷)
39 eqeq1 2626 . . . . . . . . . . . . . 14 (𝑦 = (𝑘𝑓𝑋) → (𝑦 = 𝑌 ↔ (𝑘𝑓𝑋) = 𝑌))
4039ifbid 4108 . . . . . . . . . . . . 13 (𝑦 = (𝑘𝑓𝑋) → if(𝑦 = 𝑌, 1 , 0 ) = if((𝑘𝑓𝑋) = 𝑌, 1 , 0 ))
41 eqid 2622 . . . . . . . . . . . . 13 (𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 )) = (𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))
42 fvex 6201 . . . . . . . . . . . . . . 15 (0g𝑅) ∈ V
436, 42eqeltri 2697 . . . . . . . . . . . . . 14 0 ∈ V
4429, 43ifex 4156 . . . . . . . . . . . . 13 if((𝑘𝑓𝑋) = 𝑌, 1 , 0 ) ∈ V
4540, 41, 44fvmpt 6282 . . . . . . . . . . . 12 ((𝑘𝑓𝑋) ∈ 𝐷 → ((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑋)) = if((𝑘𝑓𝑋) = 𝑌, 1 , 0 ))
4638, 45syl 17 . . . . . . . . . . 11 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) → ((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑋)) = if((𝑘𝑓𝑋) = 𝑌, 1 , 0 ))
4731, 46oveq12d 6668 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) → (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑋)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑋))) = ( 1 (.r𝑅)if((𝑘𝑓𝑋) = 𝑌, 1 , 0 )))
48 eqid 2622 . . . . . . . . . . . . . 14 (Base‘𝑅) = (Base‘𝑅)
4948, 7ringidcl 18568 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → 1 ∈ (Base‘𝑅))
5048, 6ring0cl 18569 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → 0 ∈ (Base‘𝑅))
5149, 50ifcld 4131 . . . . . . . . . . . 12 (𝑅 ∈ Ring → if((𝑘𝑓𝑋) = 𝑌, 1 , 0 ) ∈ (Base‘𝑅))
5222, 51syl 17 . . . . . . . . . . 11 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) → if((𝑘𝑓𝑋) = 𝑌, 1 , 0 ) ∈ (Base‘𝑅))
5348, 3, 7ringlidm 18571 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ if((𝑘𝑓𝑋) = 𝑌, 1 , 0 ) ∈ (Base‘𝑅)) → ( 1 (.r𝑅)if((𝑘𝑓𝑋) = 𝑌, 1 , 0 )) = if((𝑘𝑓𝑋) = 𝑌, 1 , 0 ))
5422, 52, 53syl2anc 693 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) → ( 1 (.r𝑅)if((𝑘𝑓𝑋) = 𝑌, 1 , 0 )) = if((𝑘𝑓𝑋) = 𝑌, 1 , 0 ))
555psrbagf 19365 . . . . . . . . . . . . . . . . . 18 ((𝐼𝑊𝑘𝐷) → 𝑘:𝐼⟶ℕ0)
5633, 34, 55syl2anc 693 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) → 𝑘:𝐼⟶ℕ0)
5756ffvelrnda 6359 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) ∧ 𝑧𝐼) → (𝑘𝑧) ∈ ℕ0)
588adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘𝐷) → 𝐼𝑊)
5910adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘𝐷) → 𝑋𝐷)
605psrbagf 19365 . . . . . . . . . . . . . . . . . . 19 ((𝐼𝑊𝑋𝐷) → 𝑋:𝐼⟶ℕ0)
6158, 59, 60syl2anc 693 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝐷) → 𝑋:𝐼⟶ℕ0)
6261ffvelrnda 6359 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘𝐷) ∧ 𝑧𝐼) → (𝑋𝑧) ∈ ℕ0)
6362adantlr 751 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) ∧ 𝑧𝐼) → (𝑋𝑧) ∈ ℕ0)
645psrbagf 19365 . . . . . . . . . . . . . . . . . . . 20 ((𝐼𝑊𝑌𝐷) → 𝑌:𝐼⟶ℕ0)
658, 12, 64syl2anc 693 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑌:𝐼⟶ℕ0)
6665adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝐷) → 𝑌:𝐼⟶ℕ0)
6766ffvelrnda 6359 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘𝐷) ∧ 𝑧𝐼) → (𝑌𝑧) ∈ ℕ0)
6867adantlr 751 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) ∧ 𝑧𝐼) → (𝑌𝑧) ∈ ℕ0)
69 nn0cn 11302 . . . . . . . . . . . . . . . . 17 ((𝑘𝑧) ∈ ℕ0 → (𝑘𝑧) ∈ ℂ)
70 nn0cn 11302 . . . . . . . . . . . . . . . . 17 ((𝑋𝑧) ∈ ℕ0 → (𝑋𝑧) ∈ ℂ)
71 nn0cn 11302 . . . . . . . . . . . . . . . . 17 ((𝑌𝑧) ∈ ℕ0 → (𝑌𝑧) ∈ ℂ)
72 subadd 10284 . . . . . . . . . . . . . . . . 17 (((𝑘𝑧) ∈ ℂ ∧ (𝑋𝑧) ∈ ℂ ∧ (𝑌𝑧) ∈ ℂ) → (((𝑘𝑧) − (𝑋𝑧)) = (𝑌𝑧) ↔ ((𝑋𝑧) + (𝑌𝑧)) = (𝑘𝑧)))
7369, 70, 71, 72syl3an 1368 . . . . . . . . . . . . . . . 16 (((𝑘𝑧) ∈ ℕ0 ∧ (𝑋𝑧) ∈ ℕ0 ∧ (𝑌𝑧) ∈ ℕ0) → (((𝑘𝑧) − (𝑋𝑧)) = (𝑌𝑧) ↔ ((𝑋𝑧) + (𝑌𝑧)) = (𝑘𝑧)))
7457, 63, 68, 73syl3anc 1326 . . . . . . . . . . . . . . 15 ((((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) ∧ 𝑧𝐼) → (((𝑘𝑧) − (𝑋𝑧)) = (𝑌𝑧) ↔ ((𝑋𝑧) + (𝑌𝑧)) = (𝑘𝑧)))
75 eqcom 2629 . . . . . . . . . . . . . . 15 (((𝑋𝑧) + (𝑌𝑧)) = (𝑘𝑧) ↔ (𝑘𝑧) = ((𝑋𝑧) + (𝑌𝑧)))
7674, 75syl6bb 276 . . . . . . . . . . . . . 14 ((((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) ∧ 𝑧𝐼) → (((𝑘𝑧) − (𝑋𝑧)) = (𝑌𝑧) ↔ (𝑘𝑧) = ((𝑋𝑧) + (𝑌𝑧))))
7776ralbidva 2985 . . . . . . . . . . . . 13 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) → (∀𝑧𝐼 ((𝑘𝑧) − (𝑋𝑧)) = (𝑌𝑧) ↔ ∀𝑧𝐼 (𝑘𝑧) = ((𝑋𝑧) + (𝑌𝑧))))
78 mpteqb 6299 . . . . . . . . . . . . . 14 (∀𝑧𝐼 ((𝑘𝑧) − (𝑋𝑧)) ∈ V → ((𝑧𝐼 ↦ ((𝑘𝑧) − (𝑋𝑧))) = (𝑧𝐼 ↦ (𝑌𝑧)) ↔ ∀𝑧𝐼 ((𝑘𝑧) − (𝑋𝑧)) = (𝑌𝑧)))
79 ovexd 6680 . . . . . . . . . . . . . 14 (𝑧𝐼 → ((𝑘𝑧) − (𝑋𝑧)) ∈ V)
8078, 79mprg 2926 . . . . . . . . . . . . 13 ((𝑧𝐼 ↦ ((𝑘𝑧) − (𝑋𝑧))) = (𝑧𝐼 ↦ (𝑌𝑧)) ↔ ∀𝑧𝐼 ((𝑘𝑧) − (𝑋𝑧)) = (𝑌𝑧))
81 mpteqb 6299 . . . . . . . . . . . . . 14 (∀𝑧𝐼 (𝑘𝑧) ∈ V → ((𝑧𝐼 ↦ (𝑘𝑧)) = (𝑧𝐼 ↦ ((𝑋𝑧) + (𝑌𝑧))) ↔ ∀𝑧𝐼 (𝑘𝑧) = ((𝑋𝑧) + (𝑌𝑧))))
82 fvex 6201 . . . . . . . . . . . . . . 15 (𝑘𝑧) ∈ V
8382a1i 11 . . . . . . . . . . . . . 14 (𝑧𝐼 → (𝑘𝑧) ∈ V)
8481, 83mprg 2926 . . . . . . . . . . . . 13 ((𝑧𝐼 ↦ (𝑘𝑧)) = (𝑧𝐼 ↦ ((𝑋𝑧) + (𝑌𝑧))) ↔ ∀𝑧𝐼 (𝑘𝑧) = ((𝑋𝑧) + (𝑌𝑧)))
8577, 80, 843bitr4g 303 . . . . . . . . . . . 12 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) → ((𝑧𝐼 ↦ ((𝑘𝑧) − (𝑋𝑧))) = (𝑧𝐼 ↦ (𝑌𝑧)) ↔ (𝑧𝐼 ↦ (𝑘𝑧)) = (𝑧𝐼 ↦ ((𝑋𝑧) + (𝑌𝑧)))))
8656feqmptd 6249 . . . . . . . . . . . . . 14 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) → 𝑘 = (𝑧𝐼 ↦ (𝑘𝑧)))
8761feqmptd 6249 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝐷) → 𝑋 = (𝑧𝐼 ↦ (𝑋𝑧)))
8887adantr 481 . . . . . . . . . . . . . 14 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) → 𝑋 = (𝑧𝐼 ↦ (𝑋𝑧)))
8933, 57, 63, 86, 88offval2 6914 . . . . . . . . . . . . 13 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) → (𝑘𝑓𝑋) = (𝑧𝐼 ↦ ((𝑘𝑧) − (𝑋𝑧))))
9066feqmptd 6249 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐷) → 𝑌 = (𝑧𝐼 ↦ (𝑌𝑧)))
9190adantr 481 . . . . . . . . . . . . 13 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) → 𝑌 = (𝑧𝐼 ↦ (𝑌𝑧)))
9289, 91eqeq12d 2637 . . . . . . . . . . . 12 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) → ((𝑘𝑓𝑋) = 𝑌 ↔ (𝑧𝐼 ↦ ((𝑘𝑧) − (𝑋𝑧))) = (𝑧𝐼 ↦ (𝑌𝑧))))
9358, 62, 67, 87, 90offval2 6914 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐷) → (𝑋𝑓 + 𝑌) = (𝑧𝐼 ↦ ((𝑋𝑧) + (𝑌𝑧))))
9493adantr 481 . . . . . . . . . . . . 13 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) → (𝑋𝑓 + 𝑌) = (𝑧𝐼 ↦ ((𝑋𝑧) + (𝑌𝑧))))
9586, 94eqeq12d 2637 . . . . . . . . . . . 12 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) → (𝑘 = (𝑋𝑓 + 𝑌) ↔ (𝑧𝐼 ↦ (𝑘𝑧)) = (𝑧𝐼 ↦ ((𝑋𝑧) + (𝑌𝑧)))))
9685, 92, 953bitr4d 300 . . . . . . . . . . 11 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) → ((𝑘𝑓𝑋) = 𝑌𝑘 = (𝑋𝑓 + 𝑌)))
9796ifbid 4108 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) → if((𝑘𝑓𝑋) = 𝑌, 1 , 0 ) = if(𝑘 = (𝑋𝑓 + 𝑌), 1 , 0 ))
9847, 54, 973eqtrd 2660 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) → (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑋)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑋))) = if(𝑘 = (𝑋𝑓 + 𝑌), 1 , 0 ))
9997, 52eqeltrrd 2702 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) → if(𝑘 = (𝑋𝑓 + 𝑌), 1 , 0 ) ∈ (Base‘𝑅))
10098, 99eqeltrd 2701 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) → (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑋)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑋))) ∈ (Base‘𝑅))
101 fveq2 6191 . . . . . . . . . 10 (𝑗 = 𝑋 → ((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗) = ((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑋))
102 oveq2 6658 . . . . . . . . . . 11 (𝑗 = 𝑋 → (𝑘𝑓𝑗) = (𝑘𝑓𝑋))
103102fveq2d 6195 . . . . . . . . . 10 (𝑗 = 𝑋 → ((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗)) = ((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑋)))
104101, 103oveq12d 6668 . . . . . . . . 9 (𝑗 = 𝑋 → (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗))) = (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑋)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑋))))
10548, 104gsumsn 18354 . . . . . . . 8 ((𝑅 ∈ Mnd ∧ 𝑋𝐷 ∧ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑋)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑋))) ∈ (Base‘𝑅)) → (𝑅 Σg (𝑗 ∈ {𝑋} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗))))) = (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑋)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑋))))
10624, 25, 100, 105syl3anc 1326 . . . . . . 7 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) → (𝑅 Σg (𝑗 ∈ {𝑋} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗))))) = (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑋)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑋))))
10721, 106, 983eqtrd 2660 . . . . . 6 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) → (𝑅 Σg ((𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗)))) ↾ {𝑋})) = if(𝑘 = (𝑋𝑓 + 𝑌), 1 , 0 ))
1086gsum0 17278 . . . . . . 7 (𝑅 Σg ∅) = 0
109 disjsn 4246 . . . . . . . . 9 (({𝑥𝐷𝑥𝑟𝑘} ∩ {𝑋}) = ∅ ↔ ¬ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘})
1109ad2antrr 762 . . . . . . . . . . . . 13 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘}) → 𝑅 ∈ Ring)
1111, 48, 2, 5, 11mplelf 19433 . . . . . . . . . . . . . . 15 (𝜑 → (𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )):𝐷⟶(Base‘𝑅))
112111ad2antrr 762 . . . . . . . . . . . . . 14 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘}) → (𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )):𝐷⟶(Base‘𝑅))
113 simpr 477 . . . . . . . . . . . . . . 15 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘}) → 𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘})
11432, 113sseldi 3601 . . . . . . . . . . . . . 14 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘}) → 𝑗𝐷)
115112, 114ffvelrnd 6360 . . . . . . . . . . . . 13 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘}) → ((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗) ∈ (Base‘𝑅))
1161, 48, 2, 5, 13mplelf 19433 . . . . . . . . . . . . . . 15 (𝜑 → (𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 )):𝐷⟶(Base‘𝑅))
117116ad2antrr 762 . . . . . . . . . . . . . 14 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘}) → (𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 )):𝐷⟶(Base‘𝑅))
1188ad2antrr 762 . . . . . . . . . . . . . . . 16 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘}) → 𝐼𝑊)
119 simplr 792 . . . . . . . . . . . . . . . 16 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘}) → 𝑘𝐷)
1205, 35psrbagconcl 19373 . . . . . . . . . . . . . . . 16 ((𝐼𝑊𝑘𝐷𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘}) → (𝑘𝑓𝑗) ∈ {𝑥𝐷𝑥𝑟𝑘})
121118, 119, 113, 120syl3anc 1326 . . . . . . . . . . . . . . 15 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘}) → (𝑘𝑓𝑗) ∈ {𝑥𝐷𝑥𝑟𝑘})
12232, 121sseldi 3601 . . . . . . . . . . . . . 14 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘}) → (𝑘𝑓𝑗) ∈ 𝐷)
123117, 122ffvelrnd 6360 . . . . . . . . . . . . 13 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘}) → ((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗)) ∈ (Base‘𝑅))
12448, 3ringcl 18561 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ ((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗) ∈ (Base‘𝑅) ∧ ((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗)) ∈ (Base‘𝑅)) → (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗))) ∈ (Base‘𝑅))
125110, 115, 123, 124syl3anc 1326 . . . . . . . . . . . 12 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘}) → (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗))) ∈ (Base‘𝑅))
126 eqid 2622 . . . . . . . . . . . 12 (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗)))) = (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗))))
127125, 126fmptd 6385 . . . . . . . . . . 11 ((𝜑𝑘𝐷) → (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗)))):{𝑥𝐷𝑥𝑟𝑘}⟶(Base‘𝑅))
128 ffn 6045 . . . . . . . . . . 11 ((𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗)))):{𝑥𝐷𝑥𝑟𝑘}⟶(Base‘𝑅) → (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗)))) Fn {𝑥𝐷𝑥𝑟𝑘})
129 fnresdisj 6001 . . . . . . . . . . 11 ((𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗)))) Fn {𝑥𝐷𝑥𝑟𝑘} → (({𝑥𝐷𝑥𝑟𝑘} ∩ {𝑋}) = ∅ ↔ ((𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗)))) ↾ {𝑋}) = ∅))
130127, 128, 1293syl 18 . . . . . . . . . 10 ((𝜑𝑘𝐷) → (({𝑥𝐷𝑥𝑟𝑘} ∩ {𝑋}) = ∅ ↔ ((𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗)))) ↾ {𝑋}) = ∅))
131130biimpa 501 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ ({𝑥𝐷𝑥𝑟𝑘} ∩ {𝑋}) = ∅) → ((𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗)))) ↾ {𝑋}) = ∅)
132109, 131sylan2br 493 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ ¬ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) → ((𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗)))) ↾ {𝑋}) = ∅)
133132oveq2d 6666 . . . . . . 7 (((𝜑𝑘𝐷) ∧ ¬ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) → (𝑅 Σg ((𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗)))) ↾ {𝑋})) = (𝑅 Σg ∅))
13462nn0red 11352 . . . . . . . . . . . . . 14 (((𝜑𝑘𝐷) ∧ 𝑧𝐼) → (𝑋𝑧) ∈ ℝ)
135 nn0addge1 11339 . . . . . . . . . . . . . 14 (((𝑋𝑧) ∈ ℝ ∧ (𝑌𝑧) ∈ ℕ0) → (𝑋𝑧) ≤ ((𝑋𝑧) + (𝑌𝑧)))
136134, 67, 135syl2anc 693 . . . . . . . . . . . . 13 (((𝜑𝑘𝐷) ∧ 𝑧𝐼) → (𝑋𝑧) ≤ ((𝑋𝑧) + (𝑌𝑧)))
137136ralrimiva 2966 . . . . . . . . . . . 12 ((𝜑𝑘𝐷) → ∀𝑧𝐼 (𝑋𝑧) ≤ ((𝑋𝑧) + (𝑌𝑧)))
138 ovexd 6680 . . . . . . . . . . . . 13 (((𝜑𝑘𝐷) ∧ 𝑧𝐼) → ((𝑋𝑧) + (𝑌𝑧)) ∈ V)
13958, 62, 138, 87, 93ofrfval2 6915 . . . . . . . . . . . 12 ((𝜑𝑘𝐷) → (𝑋𝑟 ≤ (𝑋𝑓 + 𝑌) ↔ ∀𝑧𝐼 (𝑋𝑧) ≤ ((𝑋𝑧) + (𝑌𝑧))))
140137, 139mpbird 247 . . . . . . . . . . 11 ((𝜑𝑘𝐷) → 𝑋𝑟 ≤ (𝑋𝑓 + 𝑌))
141 breq1 4656 . . . . . . . . . . . 12 (𝑥 = 𝑋 → (𝑥𝑟 ≤ (𝑋𝑓 + 𝑌) ↔ 𝑋𝑟 ≤ (𝑋𝑓 + 𝑌)))
142141elrab 3363 . . . . . . . . . . 11 (𝑋 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝑋𝑓 + 𝑌)} ↔ (𝑋𝐷𝑋𝑟 ≤ (𝑋𝑓 + 𝑌)))
14359, 140, 142sylanbrc 698 . . . . . . . . . 10 ((𝜑𝑘𝐷) → 𝑋 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝑋𝑓 + 𝑌)})
144 breq2 4657 . . . . . . . . . . . 12 (𝑘 = (𝑋𝑓 + 𝑌) → (𝑥𝑟𝑘𝑥𝑟 ≤ (𝑋𝑓 + 𝑌)))
145144rabbidv 3189 . . . . . . . . . . 11 (𝑘 = (𝑋𝑓 + 𝑌) → {𝑥𝐷𝑥𝑟𝑘} = {𝑥𝐷𝑥𝑟 ≤ (𝑋𝑓 + 𝑌)})
146145eleq2d 2687 . . . . . . . . . 10 (𝑘 = (𝑋𝑓 + 𝑌) → (𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘} ↔ 𝑋 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝑋𝑓 + 𝑌)}))
147143, 146syl5ibrcom 237 . . . . . . . . 9 ((𝜑𝑘𝐷) → (𝑘 = (𝑋𝑓 + 𝑌) → 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}))
148147con3dimp 457 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ ¬ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) → ¬ 𝑘 = (𝑋𝑓 + 𝑌))
149148iffalsed 4097 . . . . . . 7 (((𝜑𝑘𝐷) ∧ ¬ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) → if(𝑘 = (𝑋𝑓 + 𝑌), 1 , 0 ) = 0 )
150108, 133, 1493eqtr4a 2682 . . . . . 6 (((𝜑𝑘𝐷) ∧ ¬ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) → (𝑅 Σg ((𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗)))) ↾ {𝑋})) = if(𝑘 = (𝑋𝑓 + 𝑌), 1 , 0 ))
151107, 150pm2.61dan 832 . . . . 5 ((𝜑𝑘𝐷) → (𝑅 Σg ((𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗)))) ↾ {𝑋})) = if(𝑘 = (𝑋𝑓 + 𝑌), 1 , 0 ))
1529adantr 481 . . . . . . 7 ((𝜑𝑘𝐷) → 𝑅 ∈ Ring)
153 ringcmn 18581 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
154152, 153syl 17 . . . . . 6 ((𝜑𝑘𝐷) → 𝑅 ∈ CMnd)
1555psrbaglefi 19372 . . . . . . 7 ((𝐼𝑊𝑘𝐷) → {𝑥𝐷𝑥𝑟𝑘} ∈ Fin)
1568, 155sylan 488 . . . . . 6 ((𝜑𝑘𝐷) → {𝑥𝐷𝑥𝑟𝑘} ∈ Fin)
157 ssdif 3745 . . . . . . . . . . . 12 ({𝑥𝐷𝑥𝑟𝑘} ⊆ 𝐷 → ({𝑥𝐷𝑥𝑟𝑘} ∖ {𝑋}) ⊆ (𝐷 ∖ {𝑋}))
15832, 157ax-mp 5 . . . . . . . . . . 11 ({𝑥𝐷𝑥𝑟𝑘} ∖ {𝑋}) ⊆ (𝐷 ∖ {𝑋})
159158sseli 3599 . . . . . . . . . 10 (𝑗 ∈ ({𝑥𝐷𝑥𝑟𝑘} ∖ {𝑋}) → 𝑗 ∈ (𝐷 ∖ {𝑋}))
160111adantr 481 . . . . . . . . . . 11 ((𝜑𝑘𝐷) → (𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )):𝐷⟶(Base‘𝑅))
161 eldifsni 4320 . . . . . . . . . . . . . . 15 (𝑦 ∈ (𝐷 ∖ {𝑋}) → 𝑦𝑋)
162161adantl 482 . . . . . . . . . . . . . 14 (((𝜑𝑘𝐷) ∧ 𝑦 ∈ (𝐷 ∖ {𝑋})) → 𝑦𝑋)
163162neneqd 2799 . . . . . . . . . . . . 13 (((𝜑𝑘𝐷) ∧ 𝑦 ∈ (𝐷 ∖ {𝑋})) → ¬ 𝑦 = 𝑋)
164163iffalsed 4097 . . . . . . . . . . . 12 (((𝜑𝑘𝐷) ∧ 𝑦 ∈ (𝐷 ∖ {𝑋})) → if(𝑦 = 𝑋, 1 , 0 ) = 0 )
165 ovex 6678 . . . . . . . . . . . . . 14 (ℕ0𝑚 𝐼) ∈ V
1665, 165rabex2 4815 . . . . . . . . . . . . 13 𝐷 ∈ V
167166a1i 11 . . . . . . . . . . . 12 ((𝜑𝑘𝐷) → 𝐷 ∈ V)
168164, 167suppss2 7329 . . . . . . . . . . 11 ((𝜑𝑘𝐷) → ((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) supp 0 ) ⊆ {𝑋})
16943a1i 11 . . . . . . . . . . 11 ((𝜑𝑘𝐷) → 0 ∈ V)
170160, 168, 167, 169suppssr 7326 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ (𝐷 ∖ {𝑋})) → ((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗) = 0 )
171159, 170sylan2 491 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ ({𝑥𝐷𝑥𝑟𝑘} ∖ {𝑋})) → ((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗) = 0 )
172171oveq1d 6665 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ ({𝑥𝐷𝑥𝑟𝑘} ∖ {𝑋})) → (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗))) = ( 0 (.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗))))
173 eldifi 3732 . . . . . . . . 9 (𝑗 ∈ ({𝑥𝐷𝑥𝑟𝑘} ∖ {𝑋}) → 𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘})
17448, 3, 6ringlz 18587 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ ((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗)) ∈ (Base‘𝑅)) → ( 0 (.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗))) = 0 )
175110, 123, 174syl2anc 693 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘}) → ( 0 (.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗))) = 0 )
176173, 175sylan2 491 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ ({𝑥𝐷𝑥𝑟𝑘} ∖ {𝑋})) → ( 0 (.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗))) = 0 )
177172, 176eqtrd 2656 . . . . . . 7 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ ({𝑥𝐷𝑥𝑟𝑘} ∖ {𝑋})) → (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗))) = 0 )
178166rabex 4813 . . . . . . . 8 {𝑥𝐷𝑥𝑟𝑘} ∈ V
179178a1i 11 . . . . . . 7 ((𝜑𝑘𝐷) → {𝑥𝐷𝑥𝑟𝑘} ∈ V)
180177, 179suppss2 7329 . . . . . 6 ((𝜑𝑘𝐷) → ((𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗)))) supp 0 ) ⊆ {𝑋})
181166mptrabex 6488 . . . . . . . . 9 (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗)))) ∈ V
182 funmpt 5926 . . . . . . . . 9 Fun (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗))))
183181, 182, 433pm3.2i 1239 . . . . . . . 8 ((𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗)))) ∈ V ∧ Fun (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗)))) ∧ 0 ∈ V)
184183a1i 11 . . . . . . 7 ((𝜑𝑘𝐷) → ((𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗)))) ∈ V ∧ Fun (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗)))) ∧ 0 ∈ V))
185 snfi 8038 . . . . . . . 8 {𝑋} ∈ Fin
186185a1i 11 . . . . . . 7 ((𝜑𝑘𝐷) → {𝑋} ∈ Fin)
187 suppssfifsupp 8290 . . . . . . 7 ((((𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗)))) ∈ V ∧ Fun (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗)))) ∧ 0 ∈ V) ∧ ({𝑋} ∈ Fin ∧ ((𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗)))) supp 0 ) ⊆ {𝑋})) → (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗)))) finSupp 0 )
188184, 186, 180, 187syl12anc 1324 . . . . . 6 ((𝜑𝑘𝐷) → (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗)))) finSupp 0 )
18948, 6, 154, 156, 127, 180, 188gsumres 18314 . . . . 5 ((𝜑𝑘𝐷) → (𝑅 Σg ((𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗)))) ↾ {𝑋})) = (𝑅 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗))))))
190151, 189eqtr3d 2658 . . . 4 ((𝜑𝑘𝐷) → if(𝑘 = (𝑋𝑓 + 𝑌), 1 , 0 ) = (𝑅 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗))))))
191190mpteq2dva 4744 . . 3 (𝜑 → (𝑘𝐷 ↦ if(𝑘 = (𝑋𝑓 + 𝑌), 1 , 0 )) = (𝑘𝐷 ↦ (𝑅 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗)))))))
19217, 191syl5eq 2668 . 2 (𝜑 → (𝑦𝐷 ↦ if(𝑦 = (𝑋𝑓 + 𝑌), 1 , 0 )) = (𝑘𝐷 ↦ (𝑅 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗)))))))
19314, 192eqtr4d 2659 1 (𝜑 → ((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) · (𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))) = (𝑦𝐷 ↦ if(𝑦 = (𝑋𝑓 + 𝑌), 1 , 0 )))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  {crab 2916  Vcvv 3200  cdif 3571  cin 3573  wss 3574  c0 3915  ifcif 4086  {csn 4177   class class class wbr 4653  cmpt 4729  ccnv 5113  cres 5116  cima 5117  Fun wfun 5882   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  𝑓 cof 6895  𝑟 cofr 6896   supp csupp 7295  𝑚 cmap 7857  Fincfn 7955   finSupp cfsupp 8275  cc 9934  cr 9935   + caddc 9939  cle 10075  cmin 10266  cn 11020  0cn0 11292  Basecbs 15857  .rcmulr 15942  0gc0g 16100   Σg cgsu 16101  Mndcmnd 17294  CMndccmn 18193  1rcur 18501  Ringcrg 18547   mPoly cmpl 19353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-tset 15960  df-0g 16102  df-gsum 16103  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-psr 19356  df-mpl 19358
This theorem is referenced by:  mplcoe3  19466  mplcoe5  19468  mplmon2mul  19501
  Copyright terms: Public domain W3C validator