MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrass23l Structured version   Visualization version   GIF version

Theorem psrass23l 19408
Description: Associative identity for the ring of power series. Part of psrass23 19410 which does not require the scalar ring to be commutative. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by AV, 14-Aug-2019.)
Hypotheses
Ref Expression
psrring.s 𝑆 = (𝐼 mPwSer 𝑅)
psrring.i (𝜑𝐼𝑉)
psrring.r (𝜑𝑅 ∈ Ring)
psrass.d 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psrass.t × = (.r𝑆)
psrass.b 𝐵 = (Base‘𝑆)
psrass.x (𝜑𝑋𝐵)
psrass.y (𝜑𝑌𝐵)
psrass23l.k 𝐾 = (Base‘𝑅)
psrass23l.n · = ( ·𝑠𝑆)
psrass23l.a (𝜑𝐴𝐾)
Assertion
Ref Expression
psrass23l (𝜑 → ((𝐴 · 𝑋) × 𝑌) = (𝐴 · (𝑋 × 𝑌)))
Distinct variable groups:   𝑓,𝐼   𝑅,𝑓   𝑓,𝑋   𝑓,𝑌
Allowed substitution hints:   𝜑(𝑓)   𝐴(𝑓)   𝐵(𝑓)   𝐷(𝑓)   𝑆(𝑓)   · (𝑓)   × (𝑓)   𝐾(𝑓)   𝑉(𝑓)

Proof of Theorem psrass23l
Dummy variables 𝑥 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrring.s . . . . . . . . 9 𝑆 = (𝐼 mPwSer 𝑅)
2 psrass23l.n . . . . . . . . 9 · = ( ·𝑠𝑆)
3 eqid 2622 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
4 psrass.b . . . . . . . . 9 𝐵 = (Base‘𝑆)
5 eqid 2622 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
6 psrass.d . . . . . . . . 9 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
7 psrass23l.a . . . . . . . . . . . 12 (𝜑𝐴𝐾)
87adantr 481 . . . . . . . . . . 11 ((𝜑𝑘𝐷) → 𝐴𝐾)
9 psrass23l.k . . . . . . . . . . 11 𝐾 = (Base‘𝑅)
108, 9syl6eleq 2711 . . . . . . . . . 10 ((𝜑𝑘𝐷) → 𝐴 ∈ (Base‘𝑅))
1110adantr 481 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → 𝐴 ∈ (Base‘𝑅))
12 psrass.x . . . . . . . . . 10 (𝜑𝑋𝐵)
1312ad2antrr 762 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → 𝑋𝐵)
14 ssrab2 3687 . . . . . . . . . 10 {𝑦𝐷𝑦𝑟𝑘} ⊆ 𝐷
15 simpr 477 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘})
1614, 15sseldi 3601 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → 𝑥𝐷)
171, 2, 3, 4, 5, 6, 11, 13, 16psrvscaval 19392 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → ((𝐴 · 𝑋)‘𝑥) = (𝐴(.r𝑅)(𝑋𝑥)))
1817oveq1d 6665 . . . . . . 7 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → (((𝐴 · 𝑋)‘𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥))) = ((𝐴(.r𝑅)(𝑋𝑥))(.r𝑅)(𝑌‘(𝑘𝑓𝑥))))
19 psrring.r . . . . . . . . 9 (𝜑𝑅 ∈ Ring)
2019ad2antrr 762 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → 𝑅 ∈ Ring)
211, 3, 6, 4, 13psrelbas 19379 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → 𝑋:𝐷⟶(Base‘𝑅))
2221, 16ffvelrnd 6360 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → (𝑋𝑥) ∈ (Base‘𝑅))
23 psrass.y . . . . . . . . . . 11 (𝜑𝑌𝐵)
2423ad2antrr 762 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → 𝑌𝐵)
251, 3, 6, 4, 24psrelbas 19379 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → 𝑌:𝐷⟶(Base‘𝑅))
26 psrring.i . . . . . . . . . . . 12 (𝜑𝐼𝑉)
2726ad2antrr 762 . . . . . . . . . . 11 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → 𝐼𝑉)
28 simplr 792 . . . . . . . . . . 11 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → 𝑘𝐷)
29 eqid 2622 . . . . . . . . . . . 12 {𝑦𝐷𝑦𝑟𝑘} = {𝑦𝐷𝑦𝑟𝑘}
306, 29psrbagconcl 19373 . . . . . . . . . . 11 ((𝐼𝑉𝑘𝐷𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → (𝑘𝑓𝑥) ∈ {𝑦𝐷𝑦𝑟𝑘})
3127, 28, 15, 30syl3anc 1326 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → (𝑘𝑓𝑥) ∈ {𝑦𝐷𝑦𝑟𝑘})
3214, 31sseldi 3601 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → (𝑘𝑓𝑥) ∈ 𝐷)
3325, 32ffvelrnd 6360 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → (𝑌‘(𝑘𝑓𝑥)) ∈ (Base‘𝑅))
343, 5ringass 18564 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (Base‘𝑅) ∧ (𝑋𝑥) ∈ (Base‘𝑅) ∧ (𝑌‘(𝑘𝑓𝑥)) ∈ (Base‘𝑅))) → ((𝐴(.r𝑅)(𝑋𝑥))(.r𝑅)(𝑌‘(𝑘𝑓𝑥))) = (𝐴(.r𝑅)((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))))
3520, 11, 22, 33, 34syl13anc 1328 . . . . . . 7 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → ((𝐴(.r𝑅)(𝑋𝑥))(.r𝑅)(𝑌‘(𝑘𝑓𝑥))) = (𝐴(.r𝑅)((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))))
3618, 35eqtrd 2656 . . . . . 6 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → (((𝐴 · 𝑋)‘𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥))) = (𝐴(.r𝑅)((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))))
3736mpteq2dva 4744 . . . . 5 ((𝜑𝑘𝐷) → (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ (((𝐴 · 𝑋)‘𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))) = (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ (𝐴(.r𝑅)((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥))))))
3837oveq2d 6666 . . . 4 ((𝜑𝑘𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ (((𝐴 · 𝑋)‘𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥))))) = (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ (𝐴(.r𝑅)((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))))))
39 eqid 2622 . . . . 5 (0g𝑅) = (0g𝑅)
40 eqid 2622 . . . . 5 (+g𝑅) = (+g𝑅)
4119adantr 481 . . . . 5 ((𝜑𝑘𝐷) → 𝑅 ∈ Ring)
426psrbaglefi 19372 . . . . . 6 ((𝐼𝑉𝑘𝐷) → {𝑦𝐷𝑦𝑟𝑘} ∈ Fin)
4326, 42sylan 488 . . . . 5 ((𝜑𝑘𝐷) → {𝑦𝐷𝑦𝑟𝑘} ∈ Fin)
443, 5ringcl 18561 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑋𝑥) ∈ (Base‘𝑅) ∧ (𝑌‘(𝑘𝑓𝑥)) ∈ (Base‘𝑅)) → ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥))) ∈ (Base‘𝑅))
4520, 22, 33, 44syl3anc 1326 . . . . 5 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥))) ∈ (Base‘𝑅))
46 ovex 6678 . . . . . . . . . 10 (ℕ0𝑚 𝐼) ∈ V
476, 46rabex2 4815 . . . . . . . . 9 𝐷 ∈ V
4847mptrabex 6488 . . . . . . . 8 (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))) ∈ V
49 funmpt 5926 . . . . . . . 8 Fun (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥))))
50 fvex 6201 . . . . . . . 8 (0g𝑅) ∈ V
5148, 49, 503pm3.2i 1239 . . . . . . 7 ((𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))) ∈ V ∧ Fun (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))) ∧ (0g𝑅) ∈ V)
5251a1i 11 . . . . . 6 ((𝜑𝑘𝐷) → ((𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))) ∈ V ∧ Fun (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))) ∧ (0g𝑅) ∈ V))
53 suppssdm 7308 . . . . . . . 8 ((𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))) supp (0g𝑅)) ⊆ dom (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥))))
54 eqid 2622 . . . . . . . . 9 (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))) = (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥))))
5554dmmptss 5631 . . . . . . . 8 dom (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))) ⊆ {𝑦𝐷𝑦𝑟𝑘}
5653, 55sstri 3612 . . . . . . 7 ((𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))) supp (0g𝑅)) ⊆ {𝑦𝐷𝑦𝑟𝑘}
5756a1i 11 . . . . . 6 ((𝜑𝑘𝐷) → ((𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))) supp (0g𝑅)) ⊆ {𝑦𝐷𝑦𝑟𝑘})
58 suppssfifsupp 8290 . . . . . 6 ((((𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))) ∈ V ∧ Fun (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))) ∧ (0g𝑅) ∈ V) ∧ ({𝑦𝐷𝑦𝑟𝑘} ∈ Fin ∧ ((𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))) supp (0g𝑅)) ⊆ {𝑦𝐷𝑦𝑟𝑘})) → (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))) finSupp (0g𝑅))
5952, 43, 57, 58syl12anc 1324 . . . . 5 ((𝜑𝑘𝐷) → (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))) finSupp (0g𝑅))
603, 39, 40, 5, 41, 43, 10, 45, 59gsummulc2 18607 . . . 4 ((𝜑𝑘𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ (𝐴(.r𝑅)((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))))) = (𝐴(.r𝑅)(𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))))))
6138, 60eqtrd 2656 . . 3 ((𝜑𝑘𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ (((𝐴 · 𝑋)‘𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥))))) = (𝐴(.r𝑅)(𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))))))
6261mpteq2dva 4744 . 2 (𝜑 → (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ (((𝐴 · 𝑋)‘𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))))) = (𝑘𝐷 ↦ (𝐴(.r𝑅)(𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥))))))))
63 psrass.t . . 3 × = (.r𝑆)
641, 2, 9, 4, 19, 7, 12psrvscacl 19393 . . 3 (𝜑 → (𝐴 · 𝑋) ∈ 𝐵)
651, 4, 5, 63, 6, 64, 23psrmulfval 19385 . 2 (𝜑 → ((𝐴 · 𝑋) × 𝑌) = (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ (((𝐴 · 𝑋)‘𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))))))
661, 4, 63, 19, 12, 23psrmulcl 19388 . . . 4 (𝜑 → (𝑋 × 𝑌) ∈ 𝐵)
671, 2, 9, 4, 5, 6, 7, 66psrvsca 19391 . . 3 (𝜑 → (𝐴 · (𝑋 × 𝑌)) = ((𝐷 × {𝐴}) ∘𝑓 (.r𝑅)(𝑋 × 𝑌)))
6847a1i 11 . . . 4 (𝜑𝐷 ∈ V)
69 ovexd 6680 . . . 4 ((𝜑𝑘𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥))))) ∈ V)
70 fconstmpt 5163 . . . . 5 (𝐷 × {𝐴}) = (𝑘𝐷𝐴)
7170a1i 11 . . . 4 (𝜑 → (𝐷 × {𝐴}) = (𝑘𝐷𝐴))
721, 4, 5, 63, 6, 12, 23psrmulfval 19385 . . . 4 (𝜑 → (𝑋 × 𝑌) = (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))))))
7368, 8, 69, 71, 72offval2 6914 . . 3 (𝜑 → ((𝐷 × {𝐴}) ∘𝑓 (.r𝑅)(𝑋 × 𝑌)) = (𝑘𝐷 ↦ (𝐴(.r𝑅)(𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥))))))))
7467, 73eqtrd 2656 . 2 (𝜑 → (𝐴 · (𝑋 × 𝑌)) = (𝑘𝐷 ↦ (𝐴(.r𝑅)(𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥))))))))
7562, 65, 743eqtr4d 2666 1 (𝜑 → ((𝐴 · 𝑋) × 𝑌) = (𝐴 · (𝑋 × 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  {crab 2916  Vcvv 3200  wss 3574  {csn 4177   class class class wbr 4653  cmpt 4729   × cxp 5112  ccnv 5113  dom cdm 5114  cima 5117  Fun wfun 5882  cfv 5888  (class class class)co 6650  𝑓 cof 6895  𝑟 cofr 6896   supp csupp 7295  𝑚 cmap 7857  Fincfn 7955   finSupp cfsupp 8275  cle 10075  cmin 10266  cn 11020  0cn0 11292  Basecbs 15857  +gcplusg 15941  .rcmulr 15942   ·𝑠 cvsca 15945  0gc0g 16100   Σg cgsu 16101  Ringcrg 18547   mPwSer cmps 19351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-tset 15960  df-0g 16102  df-gsum 16103  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-grp 17425  df-minusg 17426  df-ghm 17658  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-psr 19356
This theorem is referenced by:  psrass23  19410  ply1ass23l  42170
  Copyright terms: Public domain W3C validator