MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulle0b Structured version   Visualization version   GIF version

Theorem mulle0b 10894
Description: A condition for multiplication to be nonpositive. (Contributed by Scott Fenton, 25-Jun-2013.)
Assertion
Ref Expression
mulle0b ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 · 𝐵) ≤ 0 ↔ ((𝐴 ≤ 0 ∧ 0 ≤ 𝐵) ∨ (0 ≤ 𝐴𝐵 ≤ 0))))

Proof of Theorem mulle0b
StepHypRef Expression
1 remulcl 10021 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ)
21le0neg1d 10599 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 · 𝐵) ≤ 0 ↔ 0 ≤ -(𝐴 · 𝐵)))
3 le0neg2 10537 . . . . . 6 (𝐵 ∈ ℝ → (0 ≤ 𝐵 ↔ -𝐵 ≤ 0))
43anbi2d 740 . . . . 5 (𝐵 ∈ ℝ → ((𝐴 ≤ 0 ∧ 0 ≤ 𝐵) ↔ (𝐴 ≤ 0 ∧ -𝐵 ≤ 0)))
5 le0neg1 10536 . . . . . 6 (𝐵 ∈ ℝ → (𝐵 ≤ 0 ↔ 0 ≤ -𝐵))
65anbi2d 740 . . . . 5 (𝐵 ∈ ℝ → ((0 ≤ 𝐴𝐵 ≤ 0) ↔ (0 ≤ 𝐴 ∧ 0 ≤ -𝐵)))
74, 6orbi12d 746 . . . 4 (𝐵 ∈ ℝ → (((𝐴 ≤ 0 ∧ 0 ≤ 𝐵) ∨ (0 ≤ 𝐴𝐵 ≤ 0)) ↔ ((𝐴 ≤ 0 ∧ -𝐵 ≤ 0) ∨ (0 ≤ 𝐴 ∧ 0 ≤ -𝐵))))
87adantl 482 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 ≤ 0 ∧ 0 ≤ 𝐵) ∨ (0 ≤ 𝐴𝐵 ≤ 0)) ↔ ((𝐴 ≤ 0 ∧ -𝐵 ≤ 0) ∨ (0 ≤ 𝐴 ∧ 0 ≤ -𝐵))))
9 renegcl 10344 . . . 4 (𝐵 ∈ ℝ → -𝐵 ∈ ℝ)
10 mulge0b 10893 . . . 4 ((𝐴 ∈ ℝ ∧ -𝐵 ∈ ℝ) → (0 ≤ (𝐴 · -𝐵) ↔ ((𝐴 ≤ 0 ∧ -𝐵 ≤ 0) ∨ (0 ≤ 𝐴 ∧ 0 ≤ -𝐵))))
119, 10sylan2 491 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ (𝐴 · -𝐵) ↔ ((𝐴 ≤ 0 ∧ -𝐵 ≤ 0) ∨ (0 ≤ 𝐴 ∧ 0 ≤ -𝐵))))
12 recn 10026 . . . 4 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
13 recn 10026 . . . 4 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
14 mulneg2 10467 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · -𝐵) = -(𝐴 · 𝐵))
1514breq2d 4665 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (0 ≤ (𝐴 · -𝐵) ↔ 0 ≤ -(𝐴 · 𝐵)))
1612, 13, 15syl2an 494 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ (𝐴 · -𝐵) ↔ 0 ≤ -(𝐴 · 𝐵)))
178, 11, 163bitr2rd 297 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ -(𝐴 · 𝐵) ↔ ((𝐴 ≤ 0 ∧ 0 ≤ 𝐵) ∨ (0 ≤ 𝐴𝐵 ≤ 0))))
182, 17bitrd 268 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 · 𝐵) ≤ 0 ↔ ((𝐴 ≤ 0 ∧ 0 ≤ 𝐵) ∨ (0 ≤ 𝐴𝐵 ≤ 0))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384  wcel 1990   class class class wbr 4653  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936   · cmul 9941  cle 10075  -cneg 10267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685
This theorem is referenced by:  mulsuble0b  10895  addmodlteq  12745  colinearalglem4  25789  reclt0d  39607
  Copyright terms: Public domain W3C validator