![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > negeqi | Structured version Visualization version GIF version |
Description: Equality inference for negatives. (Contributed by NM, 14-Feb-1995.) |
Ref | Expression |
---|---|
negeqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
negeqi | ⊢ -𝐴 = -𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negeqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | negeq 10273 | . 2 ⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ -𝐴 = -𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1483 -cneg 10267 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 df-ov 6653 df-neg 10269 |
This theorem is referenced by: negsubdii 10366 recgt0ii 10929 m1expcl2 12882 crreczi 12989 absi 14026 geo2sum2 14605 bpoly2 14788 bpoly3 14789 sinhval 14884 coshval 14885 cos2bnd 14918 divalglem2 15118 m1expaddsub 17918 cnmsgnsubg 19923 psgninv 19928 ncvspi 22956 cphipval2 23040 ditg0 23617 cbvditg 23618 ang180lem2 24540 ang180lem3 24541 ang180lem4 24542 1cubrlem 24568 dcubic2 24571 atandm2 24604 efiasin 24615 asinsinlem 24618 asinsin 24619 asin1 24621 reasinsin 24623 atancj 24637 atantayl2 24665 ppiub 24929 lgseisenlem1 25100 lgseisenlem2 25101 lgsquadlem1 25105 ostth3 25327 nvpi 27522 ipidsq 27565 ipasslem10 27694 normlem1 27967 polid2i 28014 lnophmlem2 28876 archirngz 29743 xrge0iif1 29984 ballotlem2 30550 itg2addnclem3 33463 dvasin 33496 areacirc 33505 lhe4.4ex1a 38528 itgsin0pilem1 40165 stoweidlem26 40243 dirkertrigeqlem3 40317 fourierdlem103 40426 sqwvfourb 40446 fourierswlem 40447 proththd 41531 |
Copyright terms: Public domain | W3C validator |