MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ang180lem2 Structured version   Visualization version   GIF version

Theorem ang180lem2 24540
Description: Lemma for ang180 24544. Show that the revolution number 𝑁 is strictly between -2 and 1. Both bounds are established by iterating using the bounds on the imaginary part of the logarithm, logimcl 24316, but the resulting bound gives only 𝑁 ≤ 1 for the upper bound. The case 𝑁 = 1 is not ruled out here, but it is in some sense an "edge case" that can only happen under very specific conditions; in particular we show that all the angle arguments 𝐴, 1 / (1 − 𝐴), (𝐴 − 1) / 𝐴 must lie on the negative real axis, which is a contradiction because clearly if 𝐴 is negative then the other two are positive real. (Contributed by Mario Carneiro, 23-Sep-2014.)
Hypotheses
Ref Expression
ang.1 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
ang180lem1.2 𝑇 = (((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴))
ang180lem1.3 𝑁 = (((𝑇 / i) / (2 · π)) − (1 / 2))
Assertion
Ref Expression
ang180lem2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-2 < 𝑁𝑁 < 1))
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝑇(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑁(𝑥,𝑦)

Proof of Theorem ang180lem2
StepHypRef Expression
1 2cn 11091 . . . . . . 7 2 ∈ ℂ
2 1re 10039 . . . . . . . . 9 1 ∈ ℝ
32rehalfcli 11281 . . . . . . . 8 (1 / 2) ∈ ℝ
43recni 10052 . . . . . . 7 (1 / 2) ∈ ℂ
51, 4negsubdii 10366 . . . . . 6 -(2 − (1 / 2)) = (-2 + (1 / 2))
6 4d2e2 11184 . . . . . . . . 9 (4 / 2) = 2
76oveq1i 6660 . . . . . . . 8 ((4 / 2) − (1 / 2)) = (2 − (1 / 2))
8 4cn 11098 . . . . . . . . . 10 4 ∈ ℂ
9 ax-1cn 9994 . . . . . . . . . 10 1 ∈ ℂ
10 2cnne0 11242 . . . . . . . . . 10 (2 ∈ ℂ ∧ 2 ≠ 0)
11 divsubdir 10721 . . . . . . . . . 10 ((4 ∈ ℂ ∧ 1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((4 − 1) / 2) = ((4 / 2) − (1 / 2)))
128, 9, 10, 11mp3an 1424 . . . . . . . . 9 ((4 − 1) / 2) = ((4 / 2) − (1 / 2))
13 3cn 11095 . . . . . . . . . . 11 3 ∈ ℂ
149, 13addcomi 10227 . . . . . . . . . . . 12 (1 + 3) = (3 + 1)
15 df-4 11081 . . . . . . . . . . . 12 4 = (3 + 1)
1614, 15eqtr4i 2647 . . . . . . . . . . 11 (1 + 3) = 4
178, 9, 13, 16subaddrii 10370 . . . . . . . . . 10 (4 − 1) = 3
1817oveq1i 6660 . . . . . . . . 9 ((4 − 1) / 2) = (3 / 2)
1912, 18eqtr3i 2646 . . . . . . . 8 ((4 / 2) − (1 / 2)) = (3 / 2)
207, 19eqtr3i 2646 . . . . . . 7 (2 − (1 / 2)) = (3 / 2)
2120negeqi 10274 . . . . . 6 -(2 − (1 / 2)) = -(3 / 2)
225, 21eqtr3i 2646 . . . . 5 (-2 + (1 / 2)) = -(3 / 2)
23 3re 11094 . . . . . . . . . . . . 13 3 ∈ ℝ
2423rehalfcli 11281 . . . . . . . . . . . 12 (3 / 2) ∈ ℝ
2524recni 10052 . . . . . . . . . . 11 (3 / 2) ∈ ℂ
26 picn 24211 . . . . . . . . . . 11 π ∈ ℂ
2725, 1, 26mulassi 10049 . . . . . . . . . 10 (((3 / 2) · 2) · π) = ((3 / 2) · (2 · π))
28 2ne0 11113 . . . . . . . . . . . 12 2 ≠ 0
2913, 1, 28divcan1i 10769 . . . . . . . . . . 11 ((3 / 2) · 2) = 3
3029oveq1i 6660 . . . . . . . . . 10 (((3 / 2) · 2) · π) = (3 · π)
3127, 30eqtr3i 2646 . . . . . . . . 9 ((3 / 2) · (2 · π)) = (3 · π)
3231negeqi 10274 . . . . . . . 8 -((3 / 2) · (2 · π)) = -(3 · π)
33 2re 11090 . . . . . . . . . . 11 2 ∈ ℝ
34 pire 24210 . . . . . . . . . . 11 π ∈ ℝ
3533, 34remulcli 10054 . . . . . . . . . 10 (2 · π) ∈ ℝ
3635recni 10052 . . . . . . . . 9 (2 · π) ∈ ℂ
3725, 36mulneg1i 10476 . . . . . . . 8 (-(3 / 2) · (2 · π)) = -((3 / 2) · (2 · π))
3813, 26mulneg2i 10477 . . . . . . . 8 (3 · -π) = -(3 · π)
3932, 37, 383eqtr4i 2654 . . . . . . 7 (-(3 / 2) · (2 · π)) = (3 · -π)
4034renegcli 10342 . . . . . . . . . . . 12 -π ∈ ℝ
4133, 40remulcli 10054 . . . . . . . . . . 11 (2 · -π) ∈ ℝ
4241a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (2 · -π) ∈ ℝ)
4340a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → -π ∈ ℝ)
44 simp1 1061 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝐴 ∈ ℂ)
45 subcl 10280 . . . . . . . . . . . . . . 15 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 − 𝐴) ∈ ℂ)
469, 44, 45sylancr 695 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 − 𝐴) ∈ ℂ)
47 simp3 1063 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝐴 ≠ 1)
4847necomd 2849 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 1 ≠ 𝐴)
49 subeq0 10307 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((1 − 𝐴) = 0 ↔ 1 = 𝐴))
509, 44, 49sylancr 695 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((1 − 𝐴) = 0 ↔ 1 = 𝐴))
5150necon3bid 2838 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((1 − 𝐴) ≠ 0 ↔ 1 ≠ 𝐴))
5248, 51mpbird 247 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 − 𝐴) ≠ 0)
5346, 52reccld 10794 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 / (1 − 𝐴)) ∈ ℂ)
5446, 52recne0d 10795 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 / (1 − 𝐴)) ≠ 0)
5553, 54logcld 24317 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (log‘(1 / (1 − 𝐴))) ∈ ℂ)
56 subcl 10280 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 − 1) ∈ ℂ)
5744, 9, 56sylancl 694 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝐴 − 1) ∈ ℂ)
58 simp2 1062 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝐴 ≠ 0)
5957, 44, 58divcld 10801 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝐴 − 1) / 𝐴) ∈ ℂ)
60 subeq0 10307 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 − 1) = 0 ↔ 𝐴 = 1))
6144, 9, 60sylancl 694 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝐴 − 1) = 0 ↔ 𝐴 = 1))
6261necon3bid 2838 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝐴 − 1) ≠ 0 ↔ 𝐴 ≠ 1))
6347, 62mpbird 247 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝐴 − 1) ≠ 0)
6457, 44, 63, 58divne0d 10817 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝐴 − 1) / 𝐴) ≠ 0)
6559, 64logcld 24317 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (log‘((𝐴 − 1) / 𝐴)) ∈ ℂ)
6655, 65addcld 10059 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) ∈ ℂ)
6766imcld 13935 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) ∈ ℝ)
68 logcl 24315 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈ ℂ)
69683adant3 1081 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (log‘𝐴) ∈ ℂ)
7069imcld 13935 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘(log‘𝐴)) ∈ ℝ)
7155imcld 13935 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘(log‘(1 / (1 − 𝐴)))) ∈ ℝ)
7265imcld 13935 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘(log‘((𝐴 − 1) / 𝐴))) ∈ ℝ)
7353, 54logimcld 24318 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-π < (ℑ‘(log‘(1 / (1 − 𝐴)))) ∧ (ℑ‘(log‘(1 / (1 − 𝐴)))) ≤ π))
7473simpld 475 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → -π < (ℑ‘(log‘(1 / (1 − 𝐴)))))
7559, 64logimcld 24318 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-π < (ℑ‘(log‘((𝐴 − 1) / 𝐴))) ∧ (ℑ‘(log‘((𝐴 − 1) / 𝐴))) ≤ π))
7675simpld 475 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → -π < (ℑ‘(log‘((𝐴 − 1) / 𝐴))))
7743, 43, 71, 72, 74, 76lt2addd 10650 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-π + -π) < ((ℑ‘(log‘(1 / (1 − 𝐴)))) + (ℑ‘(log‘((𝐴 − 1) / 𝐴)))))
78 negpicn 24214 . . . . . . . . . . . . 13 -π ∈ ℂ
79782timesi 11147 . . . . . . . . . . . 12 (2 · -π) = (-π + -π)
8079a1i 11 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (2 · -π) = (-π + -π))
8155, 65imaddd 13955 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) = ((ℑ‘(log‘(1 / (1 − 𝐴)))) + (ℑ‘(log‘((𝐴 − 1) / 𝐴)))))
8277, 80, 813brtr4d 4685 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (2 · -π) < (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))))
83 logimcl 24316 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))
84833adant3 1081 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))
8584simpld 475 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → -π < (ℑ‘(log‘𝐴)))
8642, 43, 67, 70, 82, 85lt2addd 10650 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((2 · -π) + -π) < ((ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) + (ℑ‘(log‘𝐴))))
87 df-3 11080 . . . . . . . . . . . 12 3 = (2 + 1)
8887oveq1i 6660 . . . . . . . . . . 11 (3 · -π) = ((2 + 1) · -π)
891, 9, 78adddiri 10051 . . . . . . . . . . 11 ((2 + 1) · -π) = ((2 · -π) + (1 · -π))
9078mulid2i 10043 . . . . . . . . . . . 12 (1 · -π) = -π
9190oveq2i 6661 . . . . . . . . . . 11 ((2 · -π) + (1 · -π)) = ((2 · -π) + -π)
9288, 89, 913eqtri 2648 . . . . . . . . . 10 (3 · -π) = ((2 · -π) + -π)
9392a1i 11 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (3 · -π) = ((2 · -π) + -π))
94 ang180lem1.2 . . . . . . . . . . 11 𝑇 = (((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴))
9594fveq2i 6194 . . . . . . . . . 10 (ℑ‘𝑇) = (ℑ‘(((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴)))
9666, 69imaddd 13955 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘(((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴))) = ((ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) + (ℑ‘(log‘𝐴))))
9795, 96syl5eq 2668 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘𝑇) = ((ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) + (ℑ‘(log‘𝐴))))
9886, 93, 973brtr4d 4685 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (3 · -π) < (ℑ‘𝑇))
9966, 69addcld 10059 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴)) ∈ ℂ)
10094, 99syl5eqel 2705 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝑇 ∈ ℂ)
101 imval 13847 . . . . . . . . . 10 (𝑇 ∈ ℂ → (ℑ‘𝑇) = (ℜ‘(𝑇 / i)))
102100, 101syl 17 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘𝑇) = (ℜ‘(𝑇 / i)))
103 ang.1 . . . . . . . . . . . 12 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
104 ang180lem1.3 . . . . . . . . . . . 12 𝑁 = (((𝑇 / i) / (2 · π)) − (1 / 2))
105103, 94, 104ang180lem1 24539 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑁 ∈ ℤ ∧ (𝑇 / i) ∈ ℝ))
106105simprd 479 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑇 / i) ∈ ℝ)
107106rered 13964 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℜ‘(𝑇 / i)) = (𝑇 / i))
108102, 107eqtrd 2656 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘𝑇) = (𝑇 / i))
10998, 108breqtrd 4679 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (3 · -π) < (𝑇 / i))
11039, 109syl5eqbr 4688 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-(3 / 2) · (2 · π)) < (𝑇 / i))
11124renegcli 10342 . . . . . . . 8 -(3 / 2) ∈ ℝ
112111a1i 11 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → -(3 / 2) ∈ ℝ)
11335a1i 11 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (2 · π) ∈ ℝ)
114 2pos 11112 . . . . . . . . 9 0 < 2
115 pipos 24212 . . . . . . . . 9 0 < π
11633, 34, 114, 115mulgt0ii 10170 . . . . . . . 8 0 < (2 · π)
117116a1i 11 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 0 < (2 · π))
118 ltmuldiv 10896 . . . . . . 7 ((-(3 / 2) ∈ ℝ ∧ (𝑇 / i) ∈ ℝ ∧ ((2 · π) ∈ ℝ ∧ 0 < (2 · π))) → ((-(3 / 2) · (2 · π)) < (𝑇 / i) ↔ -(3 / 2) < ((𝑇 / i) / (2 · π))))
119112, 106, 113, 117, 118syl112anc 1330 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((-(3 / 2) · (2 · π)) < (𝑇 / i) ↔ -(3 / 2) < ((𝑇 / i) / (2 · π))))
120110, 119mpbid 222 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → -(3 / 2) < ((𝑇 / i) / (2 · π)))
12122, 120syl5eqbr 4688 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-2 + (1 / 2)) < ((𝑇 / i) / (2 · π)))
12233renegcli 10342 . . . . . 6 -2 ∈ ℝ
123122a1i 11 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → -2 ∈ ℝ)
1243a1i 11 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 / 2) ∈ ℝ)
12535, 116gt0ne0ii 10564 . . . . . . 7 (2 · π) ≠ 0
126125a1i 11 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (2 · π) ≠ 0)
127106, 113, 126redivcld 10853 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝑇 / i) / (2 · π)) ∈ ℝ)
128123, 124, 127ltaddsubd 10627 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((-2 + (1 / 2)) < ((𝑇 / i) / (2 · π)) ↔ -2 < (((𝑇 / i) / (2 · π)) − (1 / 2))))
129121, 128mpbid 222 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → -2 < (((𝑇 / i) / (2 · π)) − (1 / 2)))
130129, 104syl6breqr 4695 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → -2 < 𝑁)
13134a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → π ∈ ℝ)
13273simprd 479 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘(log‘(1 / (1 − 𝐴)))) ≤ π)
13375simprd 479 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘(log‘((𝐴 − 1) / 𝐴))) ≤ π)
13471, 72, 131, 131, 132, 133le2addd 10646 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((ℑ‘(log‘(1 / (1 − 𝐴)))) + (ℑ‘(log‘((𝐴 − 1) / 𝐴)))) ≤ (π + π))
135262timesi 11147 . . . . . . . . . . . 12 (2 · π) = (π + π)
136135a1i 11 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (2 · π) = (π + π))
137134, 81, 1363brtr4d 4685 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) ≤ (2 · π))
13884simprd 479 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘(log‘𝐴)) ≤ π)
13967, 70, 113, 131, 137, 138le2addd 10646 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) + (ℑ‘(log‘𝐴))) ≤ ((2 · π) + π))
140108, 97eqtr3d 2658 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑇 / i) = ((ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) + (ℑ‘(log‘𝐴))))
14187oveq1i 6660 . . . . . . . . . . 11 (3 · π) = ((2 + 1) · π)
1421, 9, 26adddiri 10051 . . . . . . . . . . 11 ((2 + 1) · π) = ((2 · π) + (1 · π))
14326mulid2i 10043 . . . . . . . . . . . 12 (1 · π) = π
144143oveq2i 6661 . . . . . . . . . . 11 ((2 · π) + (1 · π)) = ((2 · π) + π)
145141, 142, 1443eqtri 2648 . . . . . . . . . 10 (3 · π) = ((2 · π) + π)
146145a1i 11 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (3 · π) = ((2 · π) + π))
147139, 140, 1463brtr4d 4685 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑇 / i) ≤ (3 · π))
14836subid1i 10353 . . . . . . . . . 10 ((2 · π) − 0) = (2 · π)
149148, 125eqnetri 2864 . . . . . . . . 9 ((2 · π) − 0) ≠ 0
150 negsub 10329 . . . . . . . . . . . . . . . . . . . 20 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 + -𝐴) = (1 − 𝐴))
1519, 44, 150sylancr 695 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 + -𝐴) = (1 − 𝐴))
152151adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → (1 + -𝐴) = (1 − 𝐴))
153 1rp 11836 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℝ+
154146, 140oveq12d 6668 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((3 · π) − (𝑇 / i)) = (((2 · π) + π) − ((ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) + (ℑ‘(log‘𝐴)))))
15536a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (2 · π) ∈ ℂ)
15626a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → π ∈ ℂ)
15767recnd 10068 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) ∈ ℂ)
15870recnd 10068 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘(log‘𝐴)) ∈ ℂ)
159155, 156, 157, 158addsub4d 10439 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (((2 · π) + π) − ((ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) + (ℑ‘(log‘𝐴)))) = (((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) + (π − (ℑ‘(log‘𝐴)))))
160154, 159eqtrd 2656 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((3 · π) − (𝑇 / i)) = (((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) + (π − (ℑ‘(log‘𝐴)))))
161160adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → ((3 · π) − (𝑇 / i)) = (((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) + (π − (ℑ‘(log‘𝐴)))))
16223, 34remulcli 10054 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (3 · π) ∈ ℝ
163162recni 10052 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (3 · π) ∈ ℂ
164 ax-icn 9995 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 i ∈ ℂ
165164a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → i ∈ ℂ)
166 ine0 10465 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 i ≠ 0
167166a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → i ≠ 0)
168100, 165, 167divcld 10801 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑇 / i) ∈ ℂ)
169 subeq0 10307 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((3 · π) ∈ ℂ ∧ (𝑇 / i) ∈ ℂ) → (((3 · π) − (𝑇 / i)) = 0 ↔ (3 · π) = (𝑇 / i)))
170163, 168, 169sylancr 695 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (((3 · π) − (𝑇 / i)) = 0 ↔ (3 · π) = (𝑇 / i)))
171170biimpar 502 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → ((3 · π) − (𝑇 / i)) = 0)
172161, 171eqtr3d 2658 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → (((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) + (π − (ℑ‘(log‘𝐴)))) = 0)
173 resubcl 10345 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((2 · π) ∈ ℝ ∧ (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) ∈ ℝ) → ((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) ∈ ℝ)
17435, 67, 173sylancr 695 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) ∈ ℝ)
175 subge0 10541 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((2 · π) ∈ ℝ ∧ (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) ∈ ℝ) → (0 ≤ ((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) ↔ (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) ≤ (2 · π)))
17635, 67, 175sylancr 695 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (0 ≤ ((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) ↔ (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) ≤ (2 · π)))
177137, 176mpbird 247 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 0 ≤ ((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))))
178 resubcl 10345 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((π ∈ ℝ ∧ (ℑ‘(log‘𝐴)) ∈ ℝ) → (π − (ℑ‘(log‘𝐴))) ∈ ℝ)
17934, 70, 178sylancr 695 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (π − (ℑ‘(log‘𝐴))) ∈ ℝ)
180 subge0 10541 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((π ∈ ℝ ∧ (ℑ‘(log‘𝐴)) ∈ ℝ) → (0 ≤ (π − (ℑ‘(log‘𝐴))) ↔ (ℑ‘(log‘𝐴)) ≤ π))
18134, 70, 180sylancr 695 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (0 ≤ (π − (ℑ‘(log‘𝐴))) ↔ (ℑ‘(log‘𝐴)) ≤ π))
182138, 181mpbird 247 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 0 ≤ (π − (ℑ‘(log‘𝐴))))
183 add20 10540 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) ∈ ℝ ∧ 0 ≤ ((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))))) ∧ ((π − (ℑ‘(log‘𝐴))) ∈ ℝ ∧ 0 ≤ (π − (ℑ‘(log‘𝐴))))) → ((((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) + (π − (ℑ‘(log‘𝐴)))) = 0 ↔ (((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) = 0 ∧ (π − (ℑ‘(log‘𝐴))) = 0)))
184174, 177, 179, 182, 183syl22anc 1327 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) + (π − (ℑ‘(log‘𝐴)))) = 0 ↔ (((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) = 0 ∧ (π − (ℑ‘(log‘𝐴))) = 0)))
185184biimpa 501 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) + (π − (ℑ‘(log‘𝐴)))) = 0) → (((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) = 0 ∧ (π − (ℑ‘(log‘𝐴))) = 0))
186172, 185syldan 487 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → (((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) = 0 ∧ (π − (ℑ‘(log‘𝐴))) = 0))
187186simprd 479 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → (π − (ℑ‘(log‘𝐴))) = 0)
188158adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → (ℑ‘(log‘𝐴)) ∈ ℂ)
189 subeq0 10307 . . . . . . . . . . . . . . . . . . . . . . 23 ((π ∈ ℂ ∧ (ℑ‘(log‘𝐴)) ∈ ℂ) → ((π − (ℑ‘(log‘𝐴))) = 0 ↔ π = (ℑ‘(log‘𝐴))))
19026, 188, 189sylancr 695 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → ((π − (ℑ‘(log‘𝐴))) = 0 ↔ π = (ℑ‘(log‘𝐴))))
191187, 190mpbid 222 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → π = (ℑ‘(log‘𝐴)))
192191eqcomd 2628 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → (ℑ‘(log‘𝐴)) = π)
193 lognegb 24336 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-𝐴 ∈ ℝ+ ↔ (ℑ‘(log‘𝐴)) = π))
1941933adant3 1081 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-𝐴 ∈ ℝ+ ↔ (ℑ‘(log‘𝐴)) = π))
195194adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → (-𝐴 ∈ ℝ+ ↔ (ℑ‘(log‘𝐴)) = π))
196192, 195mpbird 247 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → -𝐴 ∈ ℝ+)
197 rpaddcl 11854 . . . . . . . . . . . . . . . . . . 19 ((1 ∈ ℝ+ ∧ -𝐴 ∈ ℝ+) → (1 + -𝐴) ∈ ℝ+)
198153, 196, 197sylancr 695 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → (1 + -𝐴) ∈ ℝ+)
199152, 198eqeltrrd 2702 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → (1 − 𝐴) ∈ ℝ+)
200199rpreccld 11882 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → (1 / (1 − 𝐴)) ∈ ℝ+)
201200relogcld 24369 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → (log‘(1 / (1 − 𝐴))) ∈ ℝ)
202 negsubdi2 10340 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → -(𝐴 − 1) = (1 − 𝐴))
20344, 9, 202sylancl 694 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → -(𝐴 − 1) = (1 − 𝐴))
204203oveq1d 6665 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-(𝐴 − 1) / -𝐴) = ((1 − 𝐴) / -𝐴))
20557, 44, 58div2negd 10816 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-(𝐴 − 1) / -𝐴) = ((𝐴 − 1) / 𝐴))
206204, 205eqtr3d 2658 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((1 − 𝐴) / -𝐴) = ((𝐴 − 1) / 𝐴))
207206adantr 481 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → ((1 − 𝐴) / -𝐴) = ((𝐴 − 1) / 𝐴))
208199, 196rpdivcld 11889 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → ((1 − 𝐴) / -𝐴) ∈ ℝ+)
209207, 208eqeltrrd 2702 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → ((𝐴 − 1) / 𝐴) ∈ ℝ+)
210209relogcld 24369 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → (log‘((𝐴 − 1) / 𝐴)) ∈ ℝ)
211201, 210readdcld 10069 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → ((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) ∈ ℝ)
212211reim0d 13965 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) = 0)
213212oveq2d 6666 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → ((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) = ((2 · π) − 0))
214186simpld 475 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → ((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) = 0)
215213, 214eqtr3d 2658 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → ((2 · π) − 0) = 0)
216215ex 450 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((3 · π) = (𝑇 / i) → ((2 · π) − 0) = 0))
217216necon3d 2815 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (((2 · π) − 0) ≠ 0 → (3 · π) ≠ (𝑇 / i)))
218149, 217mpi 20 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (3 · π) ≠ (𝑇 / i))
219 ltlen 10138 . . . . . . . . 9 (((𝑇 / i) ∈ ℝ ∧ (3 · π) ∈ ℝ) → ((𝑇 / i) < (3 · π) ↔ ((𝑇 / i) ≤ (3 · π) ∧ (3 · π) ≠ (𝑇 / i))))
220106, 162, 219sylancl 694 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝑇 / i) < (3 · π) ↔ ((𝑇 / i) ≤ (3 · π) ∧ (3 · π) ≠ (𝑇 / i))))
221147, 218, 220mpbir2and 957 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑇 / i) < (3 · π))
222221, 31syl6breqr 4695 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑇 / i) < ((3 / 2) · (2 · π)))
22324a1i 11 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (3 / 2) ∈ ℝ)
224 ltdivmul2 10900 . . . . . . 7 (((𝑇 / i) ∈ ℝ ∧ (3 / 2) ∈ ℝ ∧ ((2 · π) ∈ ℝ ∧ 0 < (2 · π))) → (((𝑇 / i) / (2 · π)) < (3 / 2) ↔ (𝑇 / i) < ((3 / 2) · (2 · π))))
225106, 223, 113, 117, 224syl112anc 1330 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (((𝑇 / i) / (2 · π)) < (3 / 2) ↔ (𝑇 / i) < ((3 / 2) · (2 · π))))
226222, 225mpbird 247 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝑇 / i) / (2 · π)) < (3 / 2))
22787oveq1i 6660 . . . . . 6 (3 / 2) = ((2 + 1) / 2)
2281, 9, 1, 28divdiri 10782 . . . . . 6 ((2 + 1) / 2) = ((2 / 2) + (1 / 2))
229 2div2e1 11150 . . . . . . 7 (2 / 2) = 1
230229oveq1i 6660 . . . . . 6 ((2 / 2) + (1 / 2)) = (1 + (1 / 2))
231227, 228, 2303eqtri 2648 . . . . 5 (3 / 2) = (1 + (1 / 2))
232226, 231syl6breq 4694 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝑇 / i) / (2 · π)) < (1 + (1 / 2)))
2332a1i 11 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 1 ∈ ℝ)
234127, 124, 233ltsubaddd 10623 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((((𝑇 / i) / (2 · π)) − (1 / 2)) < 1 ↔ ((𝑇 / i) / (2 · π)) < (1 + (1 / 2))))
235232, 234mpbird 247 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (((𝑇 / i) / (2 · π)) − (1 / 2)) < 1)
236104, 235syl5eqbr 4688 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝑁 < 1)
237130, 236jca 554 1 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-2 < 𝑁𝑁 < 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  cdif 3571  {csn 4177   class class class wbr 4653  cfv 5888  (class class class)co 6650  cmpt2 6652  cc 9934  cr 9935  0cc0 9936  1c1 9937  ici 9938   + caddc 9939   · cmul 9941   < clt 10074  cle 10075  cmin 10266  -cneg 10267   / cdiv 10684  2c2 11070  3c3 11071  4c4 11072  cz 11377  +crp 11832  cre 13837  cim 13838  πcpi 14797  logclog 24301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303
This theorem is referenced by:  ang180lem3  24541
  Copyright terms: Public domain W3C validator