Proof of Theorem ang180lem2
| Step | Hyp | Ref
| Expression |
| 1 | | 2cn 11091 |
. . . . . . 7
⊢ 2 ∈
ℂ |
| 2 | | 1re 10039 |
. . . . . . . . 9
⊢ 1 ∈
ℝ |
| 3 | 2 | rehalfcli 11281 |
. . . . . . . 8
⊢ (1 / 2)
∈ ℝ |
| 4 | 3 | recni 10052 |
. . . . . . 7
⊢ (1 / 2)
∈ ℂ |
| 5 | 1, 4 | negsubdii 10366 |
. . . . . 6
⊢ -(2
− (1 / 2)) = (-2 + (1 / 2)) |
| 6 | | 4d2e2 11184 |
. . . . . . . . 9
⊢ (4 / 2) =
2 |
| 7 | 6 | oveq1i 6660 |
. . . . . . . 8
⊢ ((4 / 2)
− (1 / 2)) = (2 − (1 / 2)) |
| 8 | | 4cn 11098 |
. . . . . . . . . 10
⊢ 4 ∈
ℂ |
| 9 | | ax-1cn 9994 |
. . . . . . . . . 10
⊢ 1 ∈
ℂ |
| 10 | | 2cnne0 11242 |
. . . . . . . . . 10
⊢ (2 ∈
ℂ ∧ 2 ≠ 0) |
| 11 | | divsubdir 10721 |
. . . . . . . . . 10
⊢ ((4
∈ ℂ ∧ 1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0))
→ ((4 − 1) / 2) = ((4 / 2) − (1 / 2))) |
| 12 | 8, 9, 10, 11 | mp3an 1424 |
. . . . . . . . 9
⊢ ((4
− 1) / 2) = ((4 / 2) − (1 / 2)) |
| 13 | | 3cn 11095 |
. . . . . . . . . . 11
⊢ 3 ∈
ℂ |
| 14 | 9, 13 | addcomi 10227 |
. . . . . . . . . . . 12
⊢ (1 + 3) =
(3 + 1) |
| 15 | | df-4 11081 |
. . . . . . . . . . . 12
⊢ 4 = (3 +
1) |
| 16 | 14, 15 | eqtr4i 2647 |
. . . . . . . . . . 11
⊢ (1 + 3) =
4 |
| 17 | 8, 9, 13, 16 | subaddrii 10370 |
. . . . . . . . . 10
⊢ (4
− 1) = 3 |
| 18 | 17 | oveq1i 6660 |
. . . . . . . . 9
⊢ ((4
− 1) / 2) = (3 / 2) |
| 19 | 12, 18 | eqtr3i 2646 |
. . . . . . . 8
⊢ ((4 / 2)
− (1 / 2)) = (3 / 2) |
| 20 | 7, 19 | eqtr3i 2646 |
. . . . . . 7
⊢ (2
− (1 / 2)) = (3 / 2) |
| 21 | 20 | negeqi 10274 |
. . . . . 6
⊢ -(2
− (1 / 2)) = -(3 / 2) |
| 22 | 5, 21 | eqtr3i 2646 |
. . . . 5
⊢ (-2 + (1
/ 2)) = -(3 / 2) |
| 23 | | 3re 11094 |
. . . . . . . . . . . . 13
⊢ 3 ∈
ℝ |
| 24 | 23 | rehalfcli 11281 |
. . . . . . . . . . . 12
⊢ (3 / 2)
∈ ℝ |
| 25 | 24 | recni 10052 |
. . . . . . . . . . 11
⊢ (3 / 2)
∈ ℂ |
| 26 | | picn 24211 |
. . . . . . . . . . 11
⊢ π
∈ ℂ |
| 27 | 25, 1, 26 | mulassi 10049 |
. . . . . . . . . 10
⊢ (((3 / 2)
· 2) · π) = ((3 / 2) · (2 ·
π)) |
| 28 | | 2ne0 11113 |
. . . . . . . . . . . 12
⊢ 2 ≠
0 |
| 29 | 13, 1, 28 | divcan1i 10769 |
. . . . . . . . . . 11
⊢ ((3 / 2)
· 2) = 3 |
| 30 | 29 | oveq1i 6660 |
. . . . . . . . . 10
⊢ (((3 / 2)
· 2) · π) = (3 · π) |
| 31 | 27, 30 | eqtr3i 2646 |
. . . . . . . . 9
⊢ ((3 / 2)
· (2 · π)) = (3 · π) |
| 32 | 31 | negeqi 10274 |
. . . . . . . 8
⊢ -((3 / 2)
· (2 · π)) = -(3 · π) |
| 33 | | 2re 11090 |
. . . . . . . . . . 11
⊢ 2 ∈
ℝ |
| 34 | | pire 24210 |
. . . . . . . . . . 11
⊢ π
∈ ℝ |
| 35 | 33, 34 | remulcli 10054 |
. . . . . . . . . 10
⊢ (2
· π) ∈ ℝ |
| 36 | 35 | recni 10052 |
. . . . . . . . 9
⊢ (2
· π) ∈ ℂ |
| 37 | 25, 36 | mulneg1i 10476 |
. . . . . . . 8
⊢ (-(3 / 2)
· (2 · π)) = -((3 / 2) · (2 ·
π)) |
| 38 | 13, 26 | mulneg2i 10477 |
. . . . . . . 8
⊢ (3
· -π) = -(3 · π) |
| 39 | 32, 37, 38 | 3eqtr4i 2654 |
. . . . . . 7
⊢ (-(3 / 2)
· (2 · π)) = (3 · -π) |
| 40 | 34 | renegcli 10342 |
. . . . . . . . . . . 12
⊢ -π
∈ ℝ |
| 41 | 33, 40 | remulcli 10054 |
. . . . . . . . . . 11
⊢ (2
· -π) ∈ ℝ |
| 42 | 41 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (2 · -π) ∈
ℝ) |
| 43 | 40 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → -π ∈
ℝ) |
| 44 | | simp1 1061 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝐴 ∈ ℂ) |
| 45 | | subcl 10280 |
. . . . . . . . . . . . . . 15
⊢ ((1
∈ ℂ ∧ 𝐴
∈ ℂ) → (1 − 𝐴) ∈ ℂ) |
| 46 | 9, 44, 45 | sylancr 695 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 − 𝐴) ∈ ℂ) |
| 47 | | simp3 1063 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝐴 ≠ 1) |
| 48 | 47 | necomd 2849 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 1 ≠ 𝐴) |
| 49 | | subeq0 10307 |
. . . . . . . . . . . . . . . . 17
⊢ ((1
∈ ℂ ∧ 𝐴
∈ ℂ) → ((1 − 𝐴) = 0 ↔ 1 = 𝐴)) |
| 50 | 9, 44, 49 | sylancr 695 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((1 − 𝐴) = 0 ↔ 1 = 𝐴)) |
| 51 | 50 | necon3bid 2838 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((1 − 𝐴) ≠ 0 ↔ 1 ≠ 𝐴)) |
| 52 | 48, 51 | mpbird 247 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 − 𝐴) ≠ 0) |
| 53 | 46, 52 | reccld 10794 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 / (1 − 𝐴)) ∈
ℂ) |
| 54 | 46, 52 | recne0d 10795 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 / (1 − 𝐴)) ≠ 0) |
| 55 | 53, 54 | logcld 24317 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (log‘(1 / (1 −
𝐴))) ∈
ℂ) |
| 56 | | subcl 10280 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℂ ∧ 1 ∈
ℂ) → (𝐴 −
1) ∈ ℂ) |
| 57 | 44, 9, 56 | sylancl 694 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝐴 − 1) ∈ ℂ) |
| 58 | | simp2 1062 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝐴 ≠ 0) |
| 59 | 57, 44, 58 | divcld 10801 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝐴 − 1) / 𝐴) ∈ ℂ) |
| 60 | | subeq0 10307 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝐴 −
1) = 0 ↔ 𝐴 =
1)) |
| 61 | 44, 9, 60 | sylancl 694 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝐴 − 1) = 0 ↔ 𝐴 = 1)) |
| 62 | 61 | necon3bid 2838 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝐴 − 1) ≠ 0 ↔ 𝐴 ≠ 1)) |
| 63 | 47, 62 | mpbird 247 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝐴 − 1) ≠ 0) |
| 64 | 57, 44, 63, 58 | divne0d 10817 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝐴 − 1) / 𝐴) ≠ 0) |
| 65 | 59, 64 | logcld 24317 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (log‘((𝐴 − 1) / 𝐴)) ∈ ℂ) |
| 66 | 55, 65 | addcld 10059 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((log‘(1 / (1 −
𝐴))) + (log‘((𝐴 − 1) / 𝐴))) ∈ ℂ) |
| 67 | 66 | imcld 13935 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) →
(ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) ∈ ℝ) |
| 68 | | logcl 24315 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈
ℂ) |
| 69 | 68 | 3adant3 1081 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (log‘𝐴) ∈ ℂ) |
| 70 | 69 | imcld 13935 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) →
(ℑ‘(log‘𝐴)) ∈ ℝ) |
| 71 | 55 | imcld 13935 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘(log‘(1
/ (1 − 𝐴)))) ∈
ℝ) |
| 72 | 65 | imcld 13935 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) →
(ℑ‘(log‘((𝐴 − 1) / 𝐴))) ∈ ℝ) |
| 73 | 53, 54 | logimcld 24318 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-π <
(ℑ‘(log‘(1 / (1 − 𝐴)))) ∧ (ℑ‘(log‘(1 / (1
− 𝐴)))) ≤
π)) |
| 74 | 73 | simpld 475 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → -π <
(ℑ‘(log‘(1 / (1 − 𝐴))))) |
| 75 | 59, 64 | logimcld 24318 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-π <
(ℑ‘(log‘((𝐴 − 1) / 𝐴))) ∧ (ℑ‘(log‘((𝐴 − 1) / 𝐴))) ≤ π)) |
| 76 | 75 | simpld 475 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → -π <
(ℑ‘(log‘((𝐴 − 1) / 𝐴)))) |
| 77 | 43, 43, 71, 72, 74, 76 | lt2addd 10650 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-π + -π) <
((ℑ‘(log‘(1 / (1 − 𝐴)))) + (ℑ‘(log‘((𝐴 − 1) / 𝐴))))) |
| 78 | | negpicn 24214 |
. . . . . . . . . . . . 13
⊢ -π
∈ ℂ |
| 79 | 78 | 2timesi 11147 |
. . . . . . . . . . . 12
⊢ (2
· -π) = (-π + -π) |
| 80 | 79 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (2 · -π) = (-π
+ -π)) |
| 81 | 55, 65 | imaddd 13955 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) →
(ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) = ((ℑ‘(log‘(1 / (1
− 𝐴)))) +
(ℑ‘(log‘((𝐴 − 1) / 𝐴))))) |
| 82 | 77, 80, 81 | 3brtr4d 4685 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (2 · -π) <
(ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) |
| 83 | | logimcl 24316 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-π <
(ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π)) |
| 84 | 83 | 3adant3 1081 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-π <
(ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π)) |
| 85 | 84 | simpld 475 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → -π <
(ℑ‘(log‘𝐴))) |
| 86 | 42, 43, 67, 70, 82, 85 | lt2addd 10650 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((2 · -π) + -π)
< ((ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) + (ℑ‘(log‘𝐴)))) |
| 87 | | df-3 11080 |
. . . . . . . . . . . 12
⊢ 3 = (2 +
1) |
| 88 | 87 | oveq1i 6660 |
. . . . . . . . . . 11
⊢ (3
· -π) = ((2 + 1) · -π) |
| 89 | 1, 9, 78 | adddiri 10051 |
. . . . . . . . . . 11
⊢ ((2 + 1)
· -π) = ((2 · -π) + (1 · -π)) |
| 90 | 78 | mulid2i 10043 |
. . . . . . . . . . . 12
⊢ (1
· -π) = -π |
| 91 | 90 | oveq2i 6661 |
. . . . . . . . . . 11
⊢ ((2
· -π) + (1 · -π)) = ((2 · -π) +
-π) |
| 92 | 88, 89, 91 | 3eqtri 2648 |
. . . . . . . . . 10
⊢ (3
· -π) = ((2 · -π) + -π) |
| 93 | 92 | a1i 11 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (3 · -π) = ((2
· -π) + -π)) |
| 94 | | ang180lem1.2 |
. . . . . . . . . . 11
⊢ 𝑇 = (((log‘(1 / (1 −
𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴)) |
| 95 | 94 | fveq2i 6194 |
. . . . . . . . . 10
⊢
(ℑ‘𝑇) =
(ℑ‘(((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴))) |
| 96 | 66, 69 | imaddd 13955 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) →
(ℑ‘(((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴))) = ((ℑ‘((log‘(1 / (1
− 𝐴))) +
(log‘((𝐴 − 1) /
𝐴)))) +
(ℑ‘(log‘𝐴)))) |
| 97 | 95, 96 | syl5eq 2668 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘𝑇) =
((ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) + (ℑ‘(log‘𝐴)))) |
| 98 | 86, 93, 97 | 3brtr4d 4685 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (3 · -π) <
(ℑ‘𝑇)) |
| 99 | 66, 69 | addcld 10059 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (((log‘(1 / (1 −
𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴)) ∈ ℂ) |
| 100 | 94, 99 | syl5eqel 2705 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝑇 ∈ ℂ) |
| 101 | | imval 13847 |
. . . . . . . . . 10
⊢ (𝑇 ∈ ℂ →
(ℑ‘𝑇) =
(ℜ‘(𝑇 /
i))) |
| 102 | 100, 101 | syl 17 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘𝑇) = (ℜ‘(𝑇 / i))) |
| 103 | | ang.1 |
. . . . . . . . . . . 12
⊢ 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0})
↦ (ℑ‘(log‘(𝑦 / 𝑥)))) |
| 104 | | ang180lem1.3 |
. . . . . . . . . . . 12
⊢ 𝑁 = (((𝑇 / i) / (2 · π)) − (1 /
2)) |
| 105 | 103, 94, 104 | ang180lem1 24539 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑁 ∈ ℤ ∧ (𝑇 / i) ∈ ℝ)) |
| 106 | 105 | simprd 479 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑇 / i) ∈ ℝ) |
| 107 | 106 | rered 13964 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℜ‘(𝑇 / i)) = (𝑇 / i)) |
| 108 | 102, 107 | eqtrd 2656 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘𝑇) = (𝑇 / i)) |
| 109 | 98, 108 | breqtrd 4679 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (3 · -π) <
(𝑇 / i)) |
| 110 | 39, 109 | syl5eqbr 4688 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-(3 / 2) · (2
· π)) < (𝑇 /
i)) |
| 111 | 24 | renegcli 10342 |
. . . . . . . 8
⊢ -(3 / 2)
∈ ℝ |
| 112 | 111 | a1i 11 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → -(3 / 2) ∈
ℝ) |
| 113 | 35 | a1i 11 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (2 · π) ∈
ℝ) |
| 114 | | 2pos 11112 |
. . . . . . . . 9
⊢ 0 <
2 |
| 115 | | pipos 24212 |
. . . . . . . . 9
⊢ 0 <
π |
| 116 | 33, 34, 114, 115 | mulgt0ii 10170 |
. . . . . . . 8
⊢ 0 < (2
· π) |
| 117 | 116 | a1i 11 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 0 < (2 ·
π)) |
| 118 | | ltmuldiv 10896 |
. . . . . . 7
⊢ ((-(3 /
2) ∈ ℝ ∧ (𝑇
/ i) ∈ ℝ ∧ ((2 · π) ∈ ℝ ∧ 0 < (2
· π))) → ((-(3 / 2) · (2 · π)) < (𝑇 / i) ↔ -(3 / 2) <
((𝑇 / i) / (2 ·
π)))) |
| 119 | 112, 106,
113, 117, 118 | syl112anc 1330 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((-(3 / 2) · (2
· π)) < (𝑇 /
i) ↔ -(3 / 2) < ((𝑇
/ i) / (2 · π)))) |
| 120 | 110, 119 | mpbid 222 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → -(3 / 2) < ((𝑇 / i) / (2 ·
π))) |
| 121 | 22, 120 | syl5eqbr 4688 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-2 + (1 / 2)) < ((𝑇 / i) / (2 ·
π))) |
| 122 | 33 | renegcli 10342 |
. . . . . 6
⊢ -2 ∈
ℝ |
| 123 | 122 | a1i 11 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → -2 ∈
ℝ) |
| 124 | 3 | a1i 11 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 / 2) ∈
ℝ) |
| 125 | 35, 116 | gt0ne0ii 10564 |
. . . . . . 7
⊢ (2
· π) ≠ 0 |
| 126 | 125 | a1i 11 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (2 · π) ≠
0) |
| 127 | 106, 113,
126 | redivcld 10853 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝑇 / i) / (2 · π)) ∈
ℝ) |
| 128 | 123, 124,
127 | ltaddsubd 10627 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((-2 + (1 / 2)) < ((𝑇 / i) / (2 · π))
↔ -2 < (((𝑇 / i) /
(2 · π)) − (1 / 2)))) |
| 129 | 121, 128 | mpbid 222 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → -2 < (((𝑇 / i) / (2 · π)) − (1 /
2))) |
| 130 | 129, 104 | syl6breqr 4695 |
. 2
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → -2 < 𝑁) |
| 131 | 34 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → π ∈
ℝ) |
| 132 | 73 | simprd 479 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘(log‘(1
/ (1 − 𝐴)))) ≤
π) |
| 133 | 75 | simprd 479 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) →
(ℑ‘(log‘((𝐴 − 1) / 𝐴))) ≤ π) |
| 134 | 71, 72, 131, 131, 132, 133 | le2addd 10646 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) →
((ℑ‘(log‘(1 / (1 − 𝐴)))) + (ℑ‘(log‘((𝐴 − 1) / 𝐴)))) ≤ (π + π)) |
| 135 | 26 | 2timesi 11147 |
. . . . . . . . . . . 12
⊢ (2
· π) = (π + π) |
| 136 | 135 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (2 · π) = (π +
π)) |
| 137 | 134, 81, 136 | 3brtr4d 4685 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) →
(ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) ≤ (2 ·
π)) |
| 138 | 84 | simprd 479 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) →
(ℑ‘(log‘𝐴)) ≤ π) |
| 139 | 67, 70, 113, 131, 137, 138 | le2addd 10646 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) →
((ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) + (ℑ‘(log‘𝐴))) ≤ ((2 · π) +
π)) |
| 140 | 108, 97 | eqtr3d 2658 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑇 / i) = ((ℑ‘((log‘(1 / (1
− 𝐴))) +
(log‘((𝐴 − 1) /
𝐴)))) +
(ℑ‘(log‘𝐴)))) |
| 141 | 87 | oveq1i 6660 |
. . . . . . . . . . 11
⊢ (3
· π) = ((2 + 1) · π) |
| 142 | 1, 9, 26 | adddiri 10051 |
. . . . . . . . . . 11
⊢ ((2 + 1)
· π) = ((2 · π) + (1 · π)) |
| 143 | 26 | mulid2i 10043 |
. . . . . . . . . . . 12
⊢ (1
· π) = π |
| 144 | 143 | oveq2i 6661 |
. . . . . . . . . . 11
⊢ ((2
· π) + (1 · π)) = ((2 · π) +
π) |
| 145 | 141, 142,
144 | 3eqtri 2648 |
. . . . . . . . . 10
⊢ (3
· π) = ((2 · π) + π) |
| 146 | 145 | a1i 11 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (3 · π) = ((2
· π) + π)) |
| 147 | 139, 140,
146 | 3brtr4d 4685 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑇 / i) ≤ (3 ·
π)) |
| 148 | 36 | subid1i 10353 |
. . . . . . . . . 10
⊢ ((2
· π) − 0) = (2 · π) |
| 149 | 148, 125 | eqnetri 2864 |
. . . . . . . . 9
⊢ ((2
· π) − 0) ≠ 0 |
| 150 | | negsub 10329 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((1
∈ ℂ ∧ 𝐴
∈ ℂ) → (1 + -𝐴) = (1 − 𝐴)) |
| 151 | 9, 44, 150 | sylancr 695 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 + -𝐴) = (1 − 𝐴)) |
| 152 | 151 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → (1 + -𝐴) = (1 − 𝐴)) |
| 153 | | 1rp 11836 |
. . . . . . . . . . . . . . . . . . 19
⊢ 1 ∈
ℝ+ |
| 154 | 146, 140 | oveq12d 6668 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((3 · π) −
(𝑇 / i)) = (((2 ·
π) + π) − ((ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) + (ℑ‘(log‘𝐴))))) |
| 155 | 36 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (2 · π) ∈
ℂ) |
| 156 | 26 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → π ∈
ℂ) |
| 157 | 67 | recnd 10068 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) →
(ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) ∈ ℂ) |
| 158 | 70 | recnd 10068 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) →
(ℑ‘(log‘𝐴)) ∈ ℂ) |
| 159 | 155, 156,
157, 158 | addsub4d 10439 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (((2 · π) + π)
− ((ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) + (ℑ‘(log‘𝐴)))) = (((2 · π)
− (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) + (π −
(ℑ‘(log‘𝐴))))) |
| 160 | 154, 159 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((3 · π) −
(𝑇 / i)) = (((2 ·
π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) + (π −
(ℑ‘(log‘𝐴))))) |
| 161 | 160 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → ((3 · π)
− (𝑇 / i)) = (((2
· π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) + (π −
(ℑ‘(log‘𝐴))))) |
| 162 | 23, 34 | remulcli 10054 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (3
· π) ∈ ℝ |
| 163 | 162 | recni 10052 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (3
· π) ∈ ℂ |
| 164 | | ax-icn 9995 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ i ∈
ℂ |
| 165 | 164 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → i ∈
ℂ) |
| 166 | | ine0 10465 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ i ≠
0 |
| 167 | 166 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → i ≠ 0) |
| 168 | 100, 165,
167 | divcld 10801 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑇 / i) ∈ ℂ) |
| 169 | | subeq0 10307 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((3
· π) ∈ ℂ ∧ (𝑇 / i) ∈ ℂ) → (((3 ·
π) − (𝑇 / i)) = 0
↔ (3 · π) = (𝑇 / i))) |
| 170 | 163, 168,
169 | sylancr 695 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (((3 · π) −
(𝑇 / i)) = 0 ↔ (3
· π) = (𝑇 /
i))) |
| 171 | 170 | biimpar 502 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → ((3 · π)
− (𝑇 / i)) =
0) |
| 172 | 161, 171 | eqtr3d 2658 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → (((2 ·
π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) + (π −
(ℑ‘(log‘𝐴)))) = 0) |
| 173 | | resubcl 10345 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((2
· π) ∈ ℝ ∧ (ℑ‘((log‘(1 / (1 −
𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) ∈ ℝ) → ((2 ·
π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) ∈ ℝ) |
| 174 | 35, 67, 173 | sylancr 695 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((2 · π) −
(ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) ∈ ℝ) |
| 175 | | subge0 10541 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((2
· π) ∈ ℝ ∧ (ℑ‘((log‘(1 / (1 −
𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) ∈ ℝ) → (0 ≤ ((2
· π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) ↔ (ℑ‘((log‘(1 /
(1 − 𝐴))) +
(log‘((𝐴 − 1) /
𝐴)))) ≤ (2 ·
π))) |
| 176 | 35, 67, 175 | sylancr 695 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (0 ≤ ((2 · π)
− (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) ↔ (ℑ‘((log‘(1 /
(1 − 𝐴))) +
(log‘((𝐴 − 1) /
𝐴)))) ≤ (2 ·
π))) |
| 177 | 137, 176 | mpbird 247 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 0 ≤ ((2 · π)
− (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))))) |
| 178 | | resubcl 10345 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((π
∈ ℝ ∧ (ℑ‘(log‘𝐴)) ∈ ℝ) → (π −
(ℑ‘(log‘𝐴))) ∈ ℝ) |
| 179 | 34, 70, 178 | sylancr 695 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (π −
(ℑ‘(log‘𝐴))) ∈ ℝ) |
| 180 | | subge0 10541 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((π
∈ ℝ ∧ (ℑ‘(log‘𝐴)) ∈ ℝ) → (0 ≤ (π
− (ℑ‘(log‘𝐴))) ↔ (ℑ‘(log‘𝐴)) ≤ π)) |
| 181 | 34, 70, 180 | sylancr 695 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (0 ≤ (π −
(ℑ‘(log‘𝐴))) ↔ (ℑ‘(log‘𝐴)) ≤ π)) |
| 182 | 138, 181 | mpbird 247 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 0 ≤ (π −
(ℑ‘(log‘𝐴)))) |
| 183 | | add20 10540 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((((2
· π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) ∈ ℝ ∧ 0 ≤ ((2
· π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))))) ∧ ((π −
(ℑ‘(log‘𝐴))) ∈ ℝ ∧ 0 ≤ (π
− (ℑ‘(log‘𝐴))))) → ((((2 · π) −
(ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) + (π −
(ℑ‘(log‘𝐴)))) = 0 ↔ (((2 · π) −
(ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) = 0 ∧ (π −
(ℑ‘(log‘𝐴))) = 0))) |
| 184 | 174, 177,
179, 182, 183 | syl22anc 1327 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((((2 · π) −
(ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) + (π −
(ℑ‘(log‘𝐴)))) = 0 ↔ (((2 · π) −
(ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) = 0 ∧ (π −
(ℑ‘(log‘𝐴))) = 0))) |
| 185 | 184 | biimpa 501 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (((2 · π) −
(ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) + (π −
(ℑ‘(log‘𝐴)))) = 0) → (((2 · π) −
(ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) = 0 ∧ (π −
(ℑ‘(log‘𝐴))) = 0)) |
| 186 | 172, 185 | syldan 487 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → (((2 ·
π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) = 0 ∧ (π −
(ℑ‘(log‘𝐴))) = 0)) |
| 187 | 186 | simprd 479 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → (π −
(ℑ‘(log‘𝐴))) = 0) |
| 188 | 158 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) →
(ℑ‘(log‘𝐴)) ∈ ℂ) |
| 189 | | subeq0 10307 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((π
∈ ℂ ∧ (ℑ‘(log‘𝐴)) ∈ ℂ) → ((π −
(ℑ‘(log‘𝐴))) = 0 ↔ π =
(ℑ‘(log‘𝐴)))) |
| 190 | 26, 188, 189 | sylancr 695 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → ((π −
(ℑ‘(log‘𝐴))) = 0 ↔ π =
(ℑ‘(log‘𝐴)))) |
| 191 | 187, 190 | mpbid 222 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → π =
(ℑ‘(log‘𝐴))) |
| 192 | 191 | eqcomd 2628 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) →
(ℑ‘(log‘𝐴)) = π) |
| 193 | | lognegb 24336 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-𝐴 ∈ ℝ+
↔ (ℑ‘(log‘𝐴)) = π)) |
| 194 | 193 | 3adant3 1081 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-𝐴 ∈ ℝ+ ↔
(ℑ‘(log‘𝐴)) = π)) |
| 195 | 194 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → (-𝐴 ∈ ℝ+
↔ (ℑ‘(log‘𝐴)) = π)) |
| 196 | 192, 195 | mpbird 247 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → -𝐴 ∈
ℝ+) |
| 197 | | rpaddcl 11854 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((1
∈ ℝ+ ∧ -𝐴 ∈ ℝ+) → (1 +
-𝐴) ∈
ℝ+) |
| 198 | 153, 196,
197 | sylancr 695 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → (1 + -𝐴) ∈
ℝ+) |
| 199 | 152, 198 | eqeltrrd 2702 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → (1 − 𝐴) ∈
ℝ+) |
| 200 | 199 | rpreccld 11882 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → (1 / (1 −
𝐴)) ∈
ℝ+) |
| 201 | 200 | relogcld 24369 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → (log‘(1 / (1
− 𝐴))) ∈
ℝ) |
| 202 | | negsubdi2 10340 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐴 ∈ ℂ ∧ 1 ∈
ℂ) → -(𝐴 −
1) = (1 − 𝐴)) |
| 203 | 44, 9, 202 | sylancl 694 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → -(𝐴 − 1) = (1 − 𝐴)) |
| 204 | 203 | oveq1d 6665 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-(𝐴 − 1) / -𝐴) = ((1 − 𝐴) / -𝐴)) |
| 205 | 57, 44, 58 | div2negd 10816 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-(𝐴 − 1) / -𝐴) = ((𝐴 − 1) / 𝐴)) |
| 206 | 204, 205 | eqtr3d 2658 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((1 − 𝐴) / -𝐴) = ((𝐴 − 1) / 𝐴)) |
| 207 | 206 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → ((1 − 𝐴) / -𝐴) = ((𝐴 − 1) / 𝐴)) |
| 208 | 199, 196 | rpdivcld 11889 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → ((1 − 𝐴) / -𝐴) ∈
ℝ+) |
| 209 | 207, 208 | eqeltrrd 2702 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → ((𝐴 − 1) / 𝐴) ∈
ℝ+) |
| 210 | 209 | relogcld 24369 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → (log‘((𝐴 − 1) / 𝐴)) ∈ ℝ) |
| 211 | 201, 210 | readdcld 10069 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → ((log‘(1 /
(1 − 𝐴))) +
(log‘((𝐴 − 1) /
𝐴))) ∈
ℝ) |
| 212 | 211 | reim0d 13965 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) →
(ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) = 0) |
| 213 | 212 | oveq2d 6666 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → ((2 · π)
− (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) = ((2 · π) −
0)) |
| 214 | 186 | simpld 475 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → ((2 · π)
− (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) = 0) |
| 215 | 213, 214 | eqtr3d 2658 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → ((2 · π)
− 0) = 0) |
| 216 | 215 | ex 450 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((3 · π) = (𝑇 / i) → ((2 · π)
− 0) = 0)) |
| 217 | 216 | necon3d 2815 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (((2 · π) −
0) ≠ 0 → (3 · π) ≠ (𝑇 / i))) |
| 218 | 149, 217 | mpi 20 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (3 · π) ≠
(𝑇 / i)) |
| 219 | | ltlen 10138 |
. . . . . . . . 9
⊢ (((𝑇 / i) ∈ ℝ ∧ (3
· π) ∈ ℝ) → ((𝑇 / i) < (3 · π) ↔ ((𝑇 / i) ≤ (3 · π)
∧ (3 · π) ≠ (𝑇 / i)))) |
| 220 | 106, 162,
219 | sylancl 694 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝑇 / i) < (3 · π) ↔ ((𝑇 / i) ≤ (3 · π)
∧ (3 · π) ≠ (𝑇 / i)))) |
| 221 | 147, 218,
220 | mpbir2and 957 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑇 / i) < (3 ·
π)) |
| 222 | 221, 31 | syl6breqr 4695 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑇 / i) < ((3 / 2) · (2 ·
π))) |
| 223 | 24 | a1i 11 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (3 / 2) ∈
ℝ) |
| 224 | | ltdivmul2 10900 |
. . . . . . 7
⊢ (((𝑇 / i) ∈ ℝ ∧ (3 /
2) ∈ ℝ ∧ ((2 · π) ∈ ℝ ∧ 0 < (2
· π))) → (((𝑇 / i) / (2 · π)) < (3 / 2)
↔ (𝑇 / i) < ((3 /
2) · (2 · π)))) |
| 225 | 106, 223,
113, 117, 224 | syl112anc 1330 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (((𝑇 / i) / (2 · π)) < (3 / 2)
↔ (𝑇 / i) < ((3 /
2) · (2 · π)))) |
| 226 | 222, 225 | mpbird 247 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝑇 / i) / (2 · π)) < (3 /
2)) |
| 227 | 87 | oveq1i 6660 |
. . . . . 6
⊢ (3 / 2) =
((2 + 1) / 2) |
| 228 | 1, 9, 1, 28 | divdiri 10782 |
. . . . . 6
⊢ ((2 + 1)
/ 2) = ((2 / 2) + (1 / 2)) |
| 229 | | 2div2e1 11150 |
. . . . . . 7
⊢ (2 / 2) =
1 |
| 230 | 229 | oveq1i 6660 |
. . . . . 6
⊢ ((2 / 2)
+ (1 / 2)) = (1 + (1 / 2)) |
| 231 | 227, 228,
230 | 3eqtri 2648 |
. . . . 5
⊢ (3 / 2) =
(1 + (1 / 2)) |
| 232 | 226, 231 | syl6breq 4694 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝑇 / i) / (2 · π)) < (1 + (1 /
2))) |
| 233 | 2 | a1i 11 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 1 ∈
ℝ) |
| 234 | 127, 124,
233 | ltsubaddd 10623 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((((𝑇 / i) / (2 · π)) − (1 / 2))
< 1 ↔ ((𝑇 / i) / (2
· π)) < (1 + (1 / 2)))) |
| 235 | 232, 234 | mpbird 247 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (((𝑇 / i) / (2 · π)) − (1 / 2))
< 1) |
| 236 | 104, 235 | syl5eqbr 4688 |
. 2
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝑁 < 1) |
| 237 | 130, 236 | jca 554 |
1
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-2 < 𝑁 ∧ 𝑁 < 1)) |