MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ostth3 Structured version   Visualization version   GIF version

Theorem ostth3 25327
Description: - Lemma for ostth 25328: p-adic case. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
qrng.q 𝑄 = (ℂflds ℚ)
qabsabv.a 𝐴 = (AbsVal‘𝑄)
padic.j 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥)))))
ostth.k 𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1))
ostth.1 (𝜑𝐹𝐴)
ostth3.2 (𝜑 → ∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛))
ostth3.3 (𝜑𝑃 ∈ ℙ)
ostth3.4 (𝜑 → (𝐹𝑃) < 1)
ostth3.5 𝑅 = -((log‘(𝐹𝑃)) / (log‘𝑃))
ostth3.6 𝑆 = if((𝐹𝑃) ≤ (𝐹𝑝), (𝐹𝑝), (𝐹𝑃))
Assertion
Ref Expression
ostth3 (𝜑 → ∃𝑎 ∈ ℝ+ 𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑎)))
Distinct variable groups:   𝑛,𝑝,𝑦   𝑛,𝐾   𝑥,𝑛,𝑎,𝑝,𝑞,𝑦,𝜑   𝐽,𝑎,𝑝,𝑦   𝑆,𝑎   𝐴,𝑎,𝑛,𝑝,𝑞,𝑥,𝑦   𝑄,𝑛,𝑥,𝑦   𝐹,𝑎,𝑛,𝑝,𝑞,𝑦   𝑃,𝑎,𝑝,𝑞,𝑥,𝑦   𝑅,𝑎,𝑝,𝑞,𝑦   𝑥,𝐹
Allowed substitution hints:   𝑃(𝑛)   𝑄(𝑞,𝑝,𝑎)   𝑅(𝑥,𝑛)   𝑆(𝑥,𝑦,𝑛,𝑞,𝑝)   𝐽(𝑥,𝑛,𝑞)   𝐾(𝑥,𝑦,𝑞,𝑝,𝑎)

Proof of Theorem ostth3
Dummy variables 𝑘 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ostth3.5 . . . 4 𝑅 = -((log‘(𝐹𝑃)) / (log‘𝑃))
2 ostth.1 . . . . . . . . 9 (𝜑𝐹𝐴)
3 ostth3.3 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ ℙ)
4 prmuz2 15408 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
53, 4syl 17 . . . . . . . . . . . 12 (𝜑𝑃 ∈ (ℤ‘2))
6 eluz2b2 11761 . . . . . . . . . . . 12 (𝑃 ∈ (ℤ‘2) ↔ (𝑃 ∈ ℕ ∧ 1 < 𝑃))
75, 6sylib 208 . . . . . . . . . . 11 (𝜑 → (𝑃 ∈ ℕ ∧ 1 < 𝑃))
87simpld 475 . . . . . . . . . 10 (𝜑𝑃 ∈ ℕ)
9 nnq 11801 . . . . . . . . . 10 (𝑃 ∈ ℕ → 𝑃 ∈ ℚ)
108, 9syl 17 . . . . . . . . 9 (𝜑𝑃 ∈ ℚ)
11 qabsabv.a . . . . . . . . . 10 𝐴 = (AbsVal‘𝑄)
12 qrng.q . . . . . . . . . . 11 𝑄 = (ℂflds ℚ)
1312qrngbas 25308 . . . . . . . . . 10 ℚ = (Base‘𝑄)
1411, 13abvcl 18824 . . . . . . . . 9 ((𝐹𝐴𝑃 ∈ ℚ) → (𝐹𝑃) ∈ ℝ)
152, 10, 14syl2anc 693 . . . . . . . 8 (𝜑 → (𝐹𝑃) ∈ ℝ)
168nnne0d 11065 . . . . . . . . 9 (𝜑𝑃 ≠ 0)
1712qrng0 25310 . . . . . . . . . 10 0 = (0g𝑄)
1811, 13, 17abvgt0 18828 . . . . . . . . 9 ((𝐹𝐴𝑃 ∈ ℚ ∧ 𝑃 ≠ 0) → 0 < (𝐹𝑃))
192, 10, 16, 18syl3anc 1326 . . . . . . . 8 (𝜑 → 0 < (𝐹𝑃))
2015, 19elrpd 11869 . . . . . . 7 (𝜑 → (𝐹𝑃) ∈ ℝ+)
2120relogcld 24369 . . . . . 6 (𝜑 → (log‘(𝐹𝑃)) ∈ ℝ)
228nnred 11035 . . . . . . 7 (𝜑𝑃 ∈ ℝ)
237simprd 479 . . . . . . 7 (𝜑 → 1 < 𝑃)
2422, 23rplogcld 24375 . . . . . 6 (𝜑 → (log‘𝑃) ∈ ℝ+)
2521, 24rerpdivcld 11903 . . . . 5 (𝜑 → ((log‘(𝐹𝑃)) / (log‘𝑃)) ∈ ℝ)
2625renegcld 10457 . . . 4 (𝜑 → -((log‘(𝐹𝑃)) / (log‘𝑃)) ∈ ℝ)
271, 26syl5eqel 2705 . . 3 (𝜑𝑅 ∈ ℝ)
28 ostth3.4 . . . . . . . . 9 (𝜑 → (𝐹𝑃) < 1)
29 1rp 11836 . . . . . . . . . 10 1 ∈ ℝ+
30 logltb 24346 . . . . . . . . . 10 (((𝐹𝑃) ∈ ℝ+ ∧ 1 ∈ ℝ+) → ((𝐹𝑃) < 1 ↔ (log‘(𝐹𝑃)) < (log‘1)))
3120, 29, 30sylancl 694 . . . . . . . . 9 (𝜑 → ((𝐹𝑃) < 1 ↔ (log‘(𝐹𝑃)) < (log‘1)))
3228, 31mpbid 222 . . . . . . . 8 (𝜑 → (log‘(𝐹𝑃)) < (log‘1))
33 log1 24332 . . . . . . . 8 (log‘1) = 0
3432, 33syl6breq 4694 . . . . . . 7 (𝜑 → (log‘(𝐹𝑃)) < 0)
3524rpcnd 11874 . . . . . . . 8 (𝜑 → (log‘𝑃) ∈ ℂ)
3635mul01d 10235 . . . . . . 7 (𝜑 → ((log‘𝑃) · 0) = 0)
3734, 36breqtrrd 4681 . . . . . 6 (𝜑 → (log‘(𝐹𝑃)) < ((log‘𝑃) · 0))
38 0red 10041 . . . . . . 7 (𝜑 → 0 ∈ ℝ)
3921, 38, 24ltdivmuld 11923 . . . . . 6 (𝜑 → (((log‘(𝐹𝑃)) / (log‘𝑃)) < 0 ↔ (log‘(𝐹𝑃)) < ((log‘𝑃) · 0)))
4037, 39mpbird 247 . . . . 5 (𝜑 → ((log‘(𝐹𝑃)) / (log‘𝑃)) < 0)
4125lt0neg1d 10597 . . . . 5 (𝜑 → (((log‘(𝐹𝑃)) / (log‘𝑃)) < 0 ↔ 0 < -((log‘(𝐹𝑃)) / (log‘𝑃))))
4240, 41mpbid 222 . . . 4 (𝜑 → 0 < -((log‘(𝐹𝑃)) / (log‘𝑃)))
4342, 1syl6breqr 4695 . . 3 (𝜑 → 0 < 𝑅)
4427, 43elrpd 11869 . 2 (𝜑𝑅 ∈ ℝ+)
45 padic.j . . . . 5 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥)))))
4612, 11, 45padicabvcxp 25321 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → (𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅)) ∈ 𝐴)
473, 44, 46syl2anc 693 . . 3 (𝜑 → (𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅)) ∈ 𝐴)
48 fveq2 6191 . . . . . . . . . 10 (𝑦 = 𝑃 → ((𝐽𝑃)‘𝑦) = ((𝐽𝑃)‘𝑃))
4948oveq1d 6665 . . . . . . . . 9 (𝑦 = 𝑃 → (((𝐽𝑃)‘𝑦)↑𝑐𝑅) = (((𝐽𝑃)‘𝑃)↑𝑐𝑅))
50 eqid 2622 . . . . . . . . 9 (𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅)) = (𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅))
51 ovex 6678 . . . . . . . . 9 (((𝐽𝑃)‘𝑃)↑𝑐𝑅) ∈ V
5249, 50, 51fvmpt 6282 . . . . . . . 8 (𝑃 ∈ ℚ → ((𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅))‘𝑃) = (((𝐽𝑃)‘𝑃)↑𝑐𝑅))
5310, 52syl 17 . . . . . . 7 (𝜑 → ((𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅))‘𝑃) = (((𝐽𝑃)‘𝑃)↑𝑐𝑅))
5445padicval 25306 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑃 ∈ ℚ) → ((𝐽𝑃)‘𝑃) = if(𝑃 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑃))))
553, 10, 54syl2anc 693 . . . . . . . . 9 (𝜑 → ((𝐽𝑃)‘𝑃) = if(𝑃 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑃))))
5616neneqd 2799 . . . . . . . . . 10 (𝜑 → ¬ 𝑃 = 0)
5756iffalsed 4097 . . . . . . . . 9 (𝜑 → if(𝑃 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑃))) = (𝑃↑-(𝑃 pCnt 𝑃)))
588nncnd 11036 . . . . . . . . . . . . . . 15 (𝜑𝑃 ∈ ℂ)
5958exp1d 13003 . . . . . . . . . . . . . 14 (𝜑 → (𝑃↑1) = 𝑃)
6059oveq2d 6666 . . . . . . . . . . . . 13 (𝜑 → (𝑃 pCnt (𝑃↑1)) = (𝑃 pCnt 𝑃))
61 1z 11407 . . . . . . . . . . . . . 14 1 ∈ ℤ
62 pcid 15577 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ 1 ∈ ℤ) → (𝑃 pCnt (𝑃↑1)) = 1)
633, 61, 62sylancl 694 . . . . . . . . . . . . 13 (𝜑 → (𝑃 pCnt (𝑃↑1)) = 1)
6460, 63eqtr3d 2658 . . . . . . . . . . . 12 (𝜑 → (𝑃 pCnt 𝑃) = 1)
6564negeqd 10275 . . . . . . . . . . 11 (𝜑 → -(𝑃 pCnt 𝑃) = -1)
6665oveq2d 6666 . . . . . . . . . 10 (𝜑 → (𝑃↑-(𝑃 pCnt 𝑃)) = (𝑃↑-1))
67 neg1z 11413 . . . . . . . . . . . 12 -1 ∈ ℤ
6867a1i 11 . . . . . . . . . . 11 (𝜑 → -1 ∈ ℤ)
6958, 16, 68cxpexpzd 24457 . . . . . . . . . 10 (𝜑 → (𝑃𝑐-1) = (𝑃↑-1))
7066, 69eqtr4d 2659 . . . . . . . . 9 (𝜑 → (𝑃↑-(𝑃 pCnt 𝑃)) = (𝑃𝑐-1))
7155, 57, 703eqtrd 2660 . . . . . . . 8 (𝜑 → ((𝐽𝑃)‘𝑃) = (𝑃𝑐-1))
7271oveq1d 6665 . . . . . . 7 (𝜑 → (((𝐽𝑃)‘𝑃)↑𝑐𝑅) = ((𝑃𝑐-1)↑𝑐𝑅))
7327recnd 10068 . . . . . . . . . . 11 (𝜑𝑅 ∈ ℂ)
7473mulm1d 10482 . . . . . . . . . 10 (𝜑 → (-1 · 𝑅) = -𝑅)
751negeqi 10274 . . . . . . . . . . 11 -𝑅 = --((log‘(𝐹𝑃)) / (log‘𝑃))
7625recnd 10068 . . . . . . . . . . . 12 (𝜑 → ((log‘(𝐹𝑃)) / (log‘𝑃)) ∈ ℂ)
7776negnegd 10383 . . . . . . . . . . 11 (𝜑 → --((log‘(𝐹𝑃)) / (log‘𝑃)) = ((log‘(𝐹𝑃)) / (log‘𝑃)))
7875, 77syl5eq 2668 . . . . . . . . . 10 (𝜑 → -𝑅 = ((log‘(𝐹𝑃)) / (log‘𝑃)))
7974, 78eqtrd 2656 . . . . . . . . 9 (𝜑 → (-1 · 𝑅) = ((log‘(𝐹𝑃)) / (log‘𝑃)))
8079oveq2d 6666 . . . . . . . 8 (𝜑 → (𝑃𝑐(-1 · 𝑅)) = (𝑃𝑐((log‘(𝐹𝑃)) / (log‘𝑃))))
818nnrpd 11870 . . . . . . . . 9 (𝜑𝑃 ∈ ℝ+)
82 neg1rr 11125 . . . . . . . . . 10 -1 ∈ ℝ
8382a1i 11 . . . . . . . . 9 (𝜑 → -1 ∈ ℝ)
8481, 83, 73cxpmuld 24480 . . . . . . . 8 (𝜑 → (𝑃𝑐(-1 · 𝑅)) = ((𝑃𝑐-1)↑𝑐𝑅))
8558, 16, 76cxpefd 24458 . . . . . . . . 9 (𝜑 → (𝑃𝑐((log‘(𝐹𝑃)) / (log‘𝑃))) = (exp‘(((log‘(𝐹𝑃)) / (log‘𝑃)) · (log‘𝑃))))
8621recnd 10068 . . . . . . . . . . 11 (𝜑 → (log‘(𝐹𝑃)) ∈ ℂ)
8724rpne0d 11877 . . . . . . . . . . 11 (𝜑 → (log‘𝑃) ≠ 0)
8886, 35, 87divcan1d 10802 . . . . . . . . . 10 (𝜑 → (((log‘(𝐹𝑃)) / (log‘𝑃)) · (log‘𝑃)) = (log‘(𝐹𝑃)))
8988fveq2d 6195 . . . . . . . . 9 (𝜑 → (exp‘(((log‘(𝐹𝑃)) / (log‘𝑃)) · (log‘𝑃))) = (exp‘(log‘(𝐹𝑃))))
9020reeflogd 24370 . . . . . . . . 9 (𝜑 → (exp‘(log‘(𝐹𝑃))) = (𝐹𝑃))
9185, 89, 903eqtrd 2660 . . . . . . . 8 (𝜑 → (𝑃𝑐((log‘(𝐹𝑃)) / (log‘𝑃))) = (𝐹𝑃))
9280, 84, 913eqtr3d 2664 . . . . . . 7 (𝜑 → ((𝑃𝑐-1)↑𝑐𝑅) = (𝐹𝑃))
9353, 72, 923eqtrrd 2661 . . . . . 6 (𝜑 → (𝐹𝑃) = ((𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅))‘𝑃))
94 fveq2 6191 . . . . . . 7 (𝑃 = 𝑝 → (𝐹𝑃) = (𝐹𝑝))
95 fveq2 6191 . . . . . . 7 (𝑃 = 𝑝 → ((𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅))‘𝑃) = ((𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅))‘𝑝))
9694, 95eqeq12d 2637 . . . . . 6 (𝑃 = 𝑝 → ((𝐹𝑃) = ((𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅))‘𝑃) ↔ (𝐹𝑝) = ((𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅))‘𝑝)))
9793, 96syl5ibcom 235 . . . . 5 (𝜑 → (𝑃 = 𝑝 → (𝐹𝑝) = ((𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅))‘𝑝)))
9897adantr 481 . . . 4 ((𝜑𝑝 ∈ ℙ) → (𝑃 = 𝑝 → (𝐹𝑝) = ((𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅))‘𝑝)))
99 prmnn 15388 . . . . . . . . 9 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
10099ad2antlr 763 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → 𝑝 ∈ ℕ)
101 nnq 11801 . . . . . . . 8 (𝑝 ∈ ℕ → 𝑝 ∈ ℚ)
102100, 101syl 17 . . . . . . 7 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → 𝑝 ∈ ℚ)
103 fveq2 6191 . . . . . . . . 9 (𝑦 = 𝑝 → ((𝐽𝑃)‘𝑦) = ((𝐽𝑃)‘𝑝))
104103oveq1d 6665 . . . . . . . 8 (𝑦 = 𝑝 → (((𝐽𝑃)‘𝑦)↑𝑐𝑅) = (((𝐽𝑃)‘𝑝)↑𝑐𝑅))
105 ovex 6678 . . . . . . . 8 (((𝐽𝑃)‘𝑝)↑𝑐𝑅) ∈ V
106104, 50, 105fvmpt 6282 . . . . . . 7 (𝑝 ∈ ℚ → ((𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅))‘𝑝) = (((𝐽𝑃)‘𝑝)↑𝑐𝑅))
107102, 106syl 17 . . . . . 6 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → ((𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅))‘𝑝) = (((𝐽𝑃)‘𝑝)↑𝑐𝑅))
10873ad2antrr 762 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → 𝑅 ∈ ℂ)
1091081cxpd 24453 . . . . . . 7 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → (1↑𝑐𝑅) = 1)
1103ad2antrr 762 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → 𝑃 ∈ ℙ)
11145padicval 25306 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑝 ∈ ℚ) → ((𝐽𝑃)‘𝑝) = if(𝑝 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑝))))
112110, 102, 111syl2anc 693 . . . . . . . . 9 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → ((𝐽𝑃)‘𝑝) = if(𝑝 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑝))))
113100nnne0d 11065 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → 𝑝 ≠ 0)
114113neneqd 2799 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → ¬ 𝑝 = 0)
115114iffalsed 4097 . . . . . . . . 9 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → if(𝑝 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑝))) = (𝑃↑-(𝑃 pCnt 𝑝)))
116 pceq0 15575 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℙ ∧ 𝑝 ∈ ℕ) → ((𝑃 pCnt 𝑝) = 0 ↔ ¬ 𝑃𝑝))
1173, 99, 116syl2an 494 . . . . . . . . . . . . . . 15 ((𝜑𝑝 ∈ ℙ) → ((𝑃 pCnt 𝑝) = 0 ↔ ¬ 𝑃𝑝))
118 dvdsprm 15415 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ (ℤ‘2) ∧ 𝑝 ∈ ℙ) → (𝑃𝑝𝑃 = 𝑝))
1195, 118sylan 488 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ ℙ) → (𝑃𝑝𝑃 = 𝑝))
120119necon3bbid 2831 . . . . . . . . . . . . . . 15 ((𝜑𝑝 ∈ ℙ) → (¬ 𝑃𝑝𝑃𝑝))
121117, 120bitrd 268 . . . . . . . . . . . . . 14 ((𝜑𝑝 ∈ ℙ) → ((𝑃 pCnt 𝑝) = 0 ↔ 𝑃𝑝))
122121biimpar 502 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → (𝑃 pCnt 𝑝) = 0)
123122negeqd 10275 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → -(𝑃 pCnt 𝑝) = -0)
124 neg0 10327 . . . . . . . . . . . 12 -0 = 0
125123, 124syl6eq 2672 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → -(𝑃 pCnt 𝑝) = 0)
126125oveq2d 6666 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → (𝑃↑-(𝑃 pCnt 𝑝)) = (𝑃↑0))
12758ad2antrr 762 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → 𝑃 ∈ ℂ)
128127exp0d 13002 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → (𝑃↑0) = 1)
129126, 128eqtrd 2656 . . . . . . . . 9 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → (𝑃↑-(𝑃 pCnt 𝑝)) = 1)
130112, 115, 1293eqtrd 2660 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → ((𝐽𝑃)‘𝑝) = 1)
131130oveq1d 6665 . . . . . . 7 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → (((𝐽𝑃)‘𝑝)↑𝑐𝑅) = (1↑𝑐𝑅))
132 2re 11090 . . . . . . . . . . . . 13 2 ∈ ℝ
133132a1i 11 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → 2 ∈ ℝ)
134 ostth3.6 . . . . . . . . . . . . . 14 𝑆 = if((𝐹𝑃) ≤ (𝐹𝑝), (𝐹𝑝), (𝐹𝑃))
1352ad2antrr 762 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → 𝐹𝐴)
13611, 13abvcl 18824 . . . . . . . . . . . . . . . . . 18 ((𝐹𝐴𝑝 ∈ ℚ) → (𝐹𝑝) ∈ ℝ)
137135, 102, 136syl2anc 693 . . . . . . . . . . . . . . . . 17 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → (𝐹𝑝) ∈ ℝ)
13811, 13, 17abvgt0 18828 . . . . . . . . . . . . . . . . . 18 ((𝐹𝐴𝑝 ∈ ℚ ∧ 𝑝 ≠ 0) → 0 < (𝐹𝑝))
139135, 102, 113, 138syl3anc 1326 . . . . . . . . . . . . . . . . 17 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → 0 < (𝐹𝑝))
140137, 139elrpd 11869 . . . . . . . . . . . . . . . 16 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → (𝐹𝑝) ∈ ℝ+)
141140adantrr 753 . . . . . . . . . . . . . . 15 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → (𝐹𝑝) ∈ ℝ+)
14220ad2antrr 762 . . . . . . . . . . . . . . 15 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → (𝐹𝑃) ∈ ℝ+)
143141, 142ifcld 4131 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → if((𝐹𝑃) ≤ (𝐹𝑝), (𝐹𝑝), (𝐹𝑃)) ∈ ℝ+)
144134, 143syl5eqel 2705 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → 𝑆 ∈ ℝ+)
145144rprecred 11883 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → (1 / 𝑆) ∈ ℝ)
146 simprr 796 . . . . . . . . . . . . . . 15 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → (𝐹𝑝) < 1)
14728ad2antrr 762 . . . . . . . . . . . . . . 15 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → (𝐹𝑃) < 1)
148 breq1 4656 . . . . . . . . . . . . . . . 16 ((𝐹𝑝) = if((𝐹𝑃) ≤ (𝐹𝑝), (𝐹𝑝), (𝐹𝑃)) → ((𝐹𝑝) < 1 ↔ if((𝐹𝑃) ≤ (𝐹𝑝), (𝐹𝑝), (𝐹𝑃)) < 1))
149 breq1 4656 . . . . . . . . . . . . . . . 16 ((𝐹𝑃) = if((𝐹𝑃) ≤ (𝐹𝑝), (𝐹𝑝), (𝐹𝑃)) → ((𝐹𝑃) < 1 ↔ if((𝐹𝑃) ≤ (𝐹𝑝), (𝐹𝑝), (𝐹𝑃)) < 1))
150148, 149ifboth 4124 . . . . . . . . . . . . . . 15 (((𝐹𝑝) < 1 ∧ (𝐹𝑃) < 1) → if((𝐹𝑃) ≤ (𝐹𝑝), (𝐹𝑝), (𝐹𝑃)) < 1)
151146, 147, 150syl2anc 693 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → if((𝐹𝑃) ≤ (𝐹𝑝), (𝐹𝑝), (𝐹𝑃)) < 1)
152134, 151syl5eqbr 4688 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → 𝑆 < 1)
153144reclt1d 11885 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → (𝑆 < 1 ↔ 1 < (1 / 𝑆)))
154152, 153mpbid 222 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → 1 < (1 / 𝑆))
155 expnbnd 12993 . . . . . . . . . . . 12 ((2 ∈ ℝ ∧ (1 / 𝑆) ∈ ℝ ∧ 1 < (1 / 𝑆)) → ∃𝑘 ∈ ℕ 2 < ((1 / 𝑆)↑𝑘))
156133, 145, 154, 155syl3anc 1326 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → ∃𝑘 ∈ ℕ 2 < ((1 / 𝑆)↑𝑘))
157144rpcnd 11874 . . . . . . . . . . . . . . . . 17 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → 𝑆 ∈ ℂ)
158157adantr 481 . . . . . . . . . . . . . . . 16 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → 𝑆 ∈ ℂ)
159144rpne0d 11877 . . . . . . . . . . . . . . . . 17 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → 𝑆 ≠ 0)
160159adantr 481 . . . . . . . . . . . . . . . 16 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → 𝑆 ≠ 0)
161 nnz 11399 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
162161adantl 482 . . . . . . . . . . . . . . . 16 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℤ)
163158, 160, 162exprecd 13016 . . . . . . . . . . . . . . 15 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → ((1 / 𝑆)↑𝑘) = (1 / (𝑆𝑘)))
1642ad3antrrr 766 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → 𝐹𝐴)
165 ax-1ne0 10005 . . . . . . . . . . . . . . . . . 18 1 ≠ 0
16612qrng1 25311 . . . . . . . . . . . . . . . . . . 19 1 = (1r𝑄)
16711, 166, 17abv1z 18832 . . . . . . . . . . . . . . . . . 18 ((𝐹𝐴 ∧ 1 ≠ 0) → (𝐹‘1) = 1)
168164, 165, 167sylancl 694 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → (𝐹‘1) = 1)
1698ad2antrr 762 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → 𝑃 ∈ ℕ)
170 nnnn0 11299 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
171 nnexpcl 12873 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑃𝑘) ∈ ℕ)
172169, 170, 171syl2an 494 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → (𝑃𝑘) ∈ ℕ)
173172nnzd 11481 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → (𝑃𝑘) ∈ ℤ)
17499ad2antlr 763 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → 𝑝 ∈ ℕ)
175 nnexpcl 12873 . . . . . . . . . . . . . . . . . . . . 21 ((𝑝 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑝𝑘) ∈ ℕ)
176174, 170, 175syl2an 494 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → (𝑝𝑘) ∈ ℕ)
177176nnzd 11481 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → (𝑝𝑘) ∈ ℤ)
178 bezout 15260 . . . . . . . . . . . . . . . . . . 19 (((𝑃𝑘) ∈ ℤ ∧ (𝑝𝑘) ∈ ℤ) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ ((𝑃𝑘) gcd (𝑝𝑘)) = (((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏)))
179173, 177, 178syl2anc 693 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ ((𝑃𝑘) gcd (𝑝𝑘)) = (((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏)))
180 simprl 794 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → 𝑃𝑝)
1813ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → 𝑃 ∈ ℙ)
182 simplr 792 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → 𝑝 ∈ ℙ)
183 prmrp 15424 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑃 ∈ ℙ ∧ 𝑝 ∈ ℙ) → ((𝑃 gcd 𝑝) = 1 ↔ 𝑃𝑝))
184181, 182, 183syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → ((𝑃 gcd 𝑝) = 1 ↔ 𝑃𝑝))
185180, 184mpbird 247 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → (𝑃 gcd 𝑝) = 1)
186185adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → (𝑃 gcd 𝑝) = 1)
187169adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → 𝑃 ∈ ℕ)
188174adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → 𝑝 ∈ ℕ)
189 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
190 rppwr 15277 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑃 ∈ ℕ ∧ 𝑝 ∈ ℕ ∧ 𝑘 ∈ ℕ) → ((𝑃 gcd 𝑝) = 1 → ((𝑃𝑘) gcd (𝑝𝑘)) = 1))
191187, 188, 189, 190syl3anc 1326 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → ((𝑃 gcd 𝑝) = 1 → ((𝑃𝑘) gcd (𝑝𝑘)) = 1))
192186, 191mpd 15 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → ((𝑃𝑘) gcd (𝑝𝑘)) = 1)
193192adantrr 753 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ((𝑃𝑘) gcd (𝑝𝑘)) = 1)
194193eqeq1d 2624 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (((𝑃𝑘) gcd (𝑝𝑘)) = (((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏)) ↔ 1 = (((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏))))
1952ad3antrrr 766 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 𝐹𝐴)
196172adantrr 753 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝑃𝑘) ∈ ℕ)
197 nnq 11801 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑃𝑘) ∈ ℕ → (𝑃𝑘) ∈ ℚ)
198196, 197syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝑃𝑘) ∈ ℚ)
199 simprrl 804 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 𝑎 ∈ ℤ)
200 zq 11794 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑎 ∈ ℤ → 𝑎 ∈ ℚ)
201199, 200syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 𝑎 ∈ ℚ)
202 qmulcl 11806 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑃𝑘) ∈ ℚ ∧ 𝑎 ∈ ℚ) → ((𝑃𝑘) · 𝑎) ∈ ℚ)
203198, 201, 202syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ((𝑃𝑘) · 𝑎) ∈ ℚ)
204176adantrr 753 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝑝𝑘) ∈ ℕ)
205 nnq 11801 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑝𝑘) ∈ ℕ → (𝑝𝑘) ∈ ℚ)
206204, 205syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝑝𝑘) ∈ ℚ)
207 simprrr 805 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 𝑏 ∈ ℤ)
208 zq 11794 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑏 ∈ ℤ → 𝑏 ∈ ℚ)
209207, 208syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 𝑏 ∈ ℚ)
210 qmulcl 11806 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑝𝑘) ∈ ℚ ∧ 𝑏 ∈ ℚ) → ((𝑝𝑘) · 𝑏) ∈ ℚ)
211206, 209, 210syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ((𝑝𝑘) · 𝑏) ∈ ℚ)
212 qaddcl 11804 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑃𝑘) · 𝑎) ∈ ℚ ∧ ((𝑝𝑘) · 𝑏) ∈ ℚ) → (((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏)) ∈ ℚ)
213203, 211, 212syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏)) ∈ ℚ)
21411, 13abvcl 18824 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹𝐴 ∧ (((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏)) ∈ ℚ) → (𝐹‘(((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏))) ∈ ℝ)
215195, 213, 214syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹‘(((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏))) ∈ ℝ)
21611, 13abvcl 18824 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐹𝐴 ∧ ((𝑃𝑘) · 𝑎) ∈ ℚ) → (𝐹‘((𝑃𝑘) · 𝑎)) ∈ ℝ)
217195, 203, 216syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹‘((𝑃𝑘) · 𝑎)) ∈ ℝ)
21811, 13abvcl 18824 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐹𝐴 ∧ ((𝑝𝑘) · 𝑏) ∈ ℚ) → (𝐹‘((𝑝𝑘) · 𝑏)) ∈ ℝ)
219195, 211, 218syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹‘((𝑝𝑘) · 𝑏)) ∈ ℝ)
220217, 219readdcld 10069 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ((𝐹‘((𝑃𝑘) · 𝑎)) + (𝐹‘((𝑝𝑘) · 𝑏))) ∈ ℝ)
221 rpexpcl 12879 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑆 ∈ ℝ+𝑘 ∈ ℤ) → (𝑆𝑘) ∈ ℝ+)
222144, 161, 221syl2an 494 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → (𝑆𝑘) ∈ ℝ+)
223222rpred 11872 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → (𝑆𝑘) ∈ ℝ)
224223adantrr 753 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝑆𝑘) ∈ ℝ)
225 remulcl 10021 . . . . . . . . . . . . . . . . . . . . . . . 24 ((2 ∈ ℝ ∧ (𝑆𝑘) ∈ ℝ) → (2 · (𝑆𝑘)) ∈ ℝ)
226132, 224, 225sylancr 695 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (2 · (𝑆𝑘)) ∈ ℝ)
227 qex 11800 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ℚ ∈ V
228 cnfldadd 19751 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 + = (+g‘ℂfld)
22912, 228ressplusg 15993 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (ℚ ∈ V → + = (+g𝑄))
230227, 229ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . 25 + = (+g𝑄)
23111, 13, 230abvtri 18830 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹𝐴 ∧ ((𝑃𝑘) · 𝑎) ∈ ℚ ∧ ((𝑝𝑘) · 𝑏) ∈ ℚ) → (𝐹‘(((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏))) ≤ ((𝐹‘((𝑃𝑘) · 𝑎)) + (𝐹‘((𝑝𝑘) · 𝑏))))
232195, 203, 211, 231syl3anc 1326 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹‘(((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏))) ≤ ((𝐹‘((𝑃𝑘) · 𝑎)) + (𝐹‘((𝑝𝑘) · 𝑏))))
233 cnfldmul 19752 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 · = (.r‘ℂfld)
23412, 233ressmulr 16006 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (ℚ ∈ V → · = (.r𝑄))
235227, 234ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 · = (.r𝑄)
23611, 13, 235abvmul 18829 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐹𝐴 ∧ (𝑃𝑘) ∈ ℚ ∧ 𝑎 ∈ ℚ) → (𝐹‘((𝑃𝑘) · 𝑎)) = ((𝐹‘(𝑃𝑘)) · (𝐹𝑎)))
237195, 198, 201, 236syl3anc 1326 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹‘((𝑃𝑘) · 𝑎)) = ((𝐹‘(𝑃𝑘)) · (𝐹𝑎)))
23810ad3antrrr 766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 𝑃 ∈ ℚ)
239170ad2antrl 764 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 𝑘 ∈ ℕ0)
24012, 11qabvexp 25315 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐹𝐴𝑃 ∈ ℚ ∧ 𝑘 ∈ ℕ0) → (𝐹‘(𝑃𝑘)) = ((𝐹𝑃)↑𝑘))
241195, 238, 239, 240syl3anc 1326 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹‘(𝑃𝑘)) = ((𝐹𝑃)↑𝑘))
242241oveq1d 6665 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ((𝐹‘(𝑃𝑘)) · (𝐹𝑎)) = (((𝐹𝑃)↑𝑘) · (𝐹𝑎)))
243237, 242eqtrd 2656 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹‘((𝑃𝑘) · 𝑎)) = (((𝐹𝑃)↑𝑘) · (𝐹𝑎)))
244195, 238, 14syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹𝑃) ∈ ℝ)
245244, 239reexpcld 13025 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ((𝐹𝑃)↑𝑘) ∈ ℝ)
24611, 13abvcl 18824 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐹𝐴𝑎 ∈ ℚ) → (𝐹𝑎) ∈ ℝ)
247195, 201, 246syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹𝑎) ∈ ℝ)
248245, 247remulcld 10070 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (((𝐹𝑃)↑𝑘) · (𝐹𝑎)) ∈ ℝ)
249 elz 11379 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑎 ∈ ℤ ↔ (𝑎 ∈ ℝ ∧ (𝑎 = 0 ∨ 𝑎 ∈ ℕ ∨ -𝑎 ∈ ℕ)))
250249simprbi 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑎 ∈ ℤ → (𝑎 = 0 ∨ 𝑎 ∈ ℕ ∨ -𝑎 ∈ ℕ))
251250adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑎 ∈ ℤ) → (𝑎 = 0 ∨ 𝑎 ∈ ℕ ∨ -𝑎 ∈ ℕ))
25211, 17abv0 18831 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝐹𝐴 → (𝐹‘0) = 0)
2532, 252syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝜑 → (𝐹‘0) = 0)
254 0le1 10551 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 0 ≤ 1
255253, 254syl6eqbr 4692 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝜑 → (𝐹‘0) ≤ 1)
256255adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑𝑎 ∈ ℤ) → (𝐹‘0) ≤ 1)
257 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑎 = 0 → (𝐹𝑎) = (𝐹‘0))
258257breq1d 4663 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑎 = 0 → ((𝐹𝑎) ≤ 1 ↔ (𝐹‘0) ≤ 1))
259256, 258syl5ibrcom 237 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑎 ∈ ℤ) → (𝑎 = 0 → (𝐹𝑎) ≤ 1))
260 ostth3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝜑 → ∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛))
261 nnq 11801 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑛 ∈ ℕ → 𝑛 ∈ ℚ)
26211, 13abvcl 18824 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝐹𝐴𝑛 ∈ ℚ) → (𝐹𝑛) ∈ ℝ)
2632, 261, 262syl2an 494 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ℝ)
264 1re 10039 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 1 ∈ ℝ
265 lenlt 10116 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝐹𝑛) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝐹𝑛) ≤ 1 ↔ ¬ 1 < (𝐹𝑛)))
266263, 264, 265sylancl 694 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜑𝑛 ∈ ℕ) → ((𝐹𝑛) ≤ 1 ↔ ¬ 1 < (𝐹𝑛)))
267266ralbidva 2985 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝜑 → (∀𝑛 ∈ ℕ (𝐹𝑛) ≤ 1 ↔ ∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛)))
268260, 267mpbird 247 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝜑 → ∀𝑛 ∈ ℕ (𝐹𝑛) ≤ 1)
269 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑛 = 𝑎 → (𝐹𝑛) = (𝐹𝑎))
270269breq1d 4663 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑛 = 𝑎 → ((𝐹𝑛) ≤ 1 ↔ (𝐹𝑎) ≤ 1))
271270rspccv 3306 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (∀𝑛 ∈ ℕ (𝐹𝑛) ≤ 1 → (𝑎 ∈ ℕ → (𝐹𝑎) ≤ 1))
272268, 271syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝜑 → (𝑎 ∈ ℕ → (𝐹𝑎) ≤ 1))
273272adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑎 ∈ ℤ) → (𝑎 ∈ ℕ → (𝐹𝑎) ≤ 1))
2742adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜑 ∧ (𝑎 ∈ ℤ ∧ -𝑎 ∈ ℕ)) → 𝐹𝐴)
275200ad2antrl 764 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜑 ∧ (𝑎 ∈ ℤ ∧ -𝑎 ∈ ℕ)) → 𝑎 ∈ ℚ)
276 eqid 2622 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (invg𝑄) = (invg𝑄)
27711, 13, 276abvneg 18834 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝐹𝐴𝑎 ∈ ℚ) → (𝐹‘((invg𝑄)‘𝑎)) = (𝐹𝑎))
278274, 275, 277syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑 ∧ (𝑎 ∈ ℤ ∧ -𝑎 ∈ ℕ)) → (𝐹‘((invg𝑄)‘𝑎)) = (𝐹𝑎))
27912qrngneg 25312 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑎 ∈ ℚ → ((invg𝑄)‘𝑎) = -𝑎)
280275, 279syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜑 ∧ (𝑎 ∈ ℤ ∧ -𝑎 ∈ ℕ)) → ((invg𝑄)‘𝑎) = -𝑎)
281 simprr 796 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜑 ∧ (𝑎 ∈ ℤ ∧ -𝑎 ∈ ℕ)) → -𝑎 ∈ ℕ)
282280, 281eqeltrd 2701 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜑 ∧ (𝑎 ∈ ℤ ∧ -𝑎 ∈ ℕ)) → ((invg𝑄)‘𝑎) ∈ ℕ)
283268adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜑 ∧ (𝑎 ∈ ℤ ∧ -𝑎 ∈ ℕ)) → ∀𝑛 ∈ ℕ (𝐹𝑛) ≤ 1)
284 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑛 = ((invg𝑄)‘𝑎) → (𝐹𝑛) = (𝐹‘((invg𝑄)‘𝑎)))
285284breq1d 4663 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑛 = ((invg𝑄)‘𝑎) → ((𝐹𝑛) ≤ 1 ↔ (𝐹‘((invg𝑄)‘𝑎)) ≤ 1))
286285rspcv 3305 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((invg𝑄)‘𝑎) ∈ ℕ → (∀𝑛 ∈ ℕ (𝐹𝑛) ≤ 1 → (𝐹‘((invg𝑄)‘𝑎)) ≤ 1))
287282, 283, 286sylc 65 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑 ∧ (𝑎 ∈ ℤ ∧ -𝑎 ∈ ℕ)) → (𝐹‘((invg𝑄)‘𝑎)) ≤ 1)
288278, 287eqbrtrrd 4677 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑 ∧ (𝑎 ∈ ℤ ∧ -𝑎 ∈ ℕ)) → (𝐹𝑎) ≤ 1)
289288expr 643 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑎 ∈ ℤ) → (-𝑎 ∈ ℕ → (𝐹𝑎) ≤ 1))
290259, 273, 2893jaod 1392 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑎 ∈ ℤ) → ((𝑎 = 0 ∨ 𝑎 ∈ ℕ ∨ -𝑎 ∈ ℕ) → (𝐹𝑎) ≤ 1))
291251, 290mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑎 ∈ ℤ) → (𝐹𝑎) ≤ 1)
292291ralrimiva 2966 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑 → ∀𝑎 ∈ ℤ (𝐹𝑎) ≤ 1)
293292ad3antrrr 766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ∀𝑎 ∈ ℤ (𝐹𝑎) ≤ 1)
294 rsp 2929 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (∀𝑎 ∈ ℤ (𝐹𝑎) ≤ 1 → (𝑎 ∈ ℤ → (𝐹𝑎) ≤ 1))
295293, 199, 294sylc 65 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹𝑎) ≤ 1)
296264a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 1 ∈ ℝ)
297161ad2antrl 764 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 𝑘 ∈ ℤ)
29819ad3antrrr 766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 0 < (𝐹𝑃))
299 expgt0 12893 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝐹𝑃) ∈ ℝ ∧ 𝑘 ∈ ℤ ∧ 0 < (𝐹𝑃)) → 0 < ((𝐹𝑃)↑𝑘))
300244, 297, 298, 299syl3anc 1326 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 0 < ((𝐹𝑃)↑𝑘))
301 lemul2 10876 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝐹𝑎) ∈ ℝ ∧ 1 ∈ ℝ ∧ (((𝐹𝑃)↑𝑘) ∈ ℝ ∧ 0 < ((𝐹𝑃)↑𝑘))) → ((𝐹𝑎) ≤ 1 ↔ (((𝐹𝑃)↑𝑘) · (𝐹𝑎)) ≤ (((𝐹𝑃)↑𝑘) · 1)))
302247, 296, 245, 300, 301syl112anc 1330 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ((𝐹𝑎) ≤ 1 ↔ (((𝐹𝑃)↑𝑘) · (𝐹𝑎)) ≤ (((𝐹𝑃)↑𝑘) · 1)))
303295, 302mpbid 222 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (((𝐹𝑃)↑𝑘) · (𝐹𝑎)) ≤ (((𝐹𝑃)↑𝑘) · 1))
304245recnd 10068 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ((𝐹𝑃)↑𝑘) ∈ ℂ)
305304mulid1d 10057 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (((𝐹𝑃)↑𝑘) · 1) = ((𝐹𝑃)↑𝑘))
306303, 305breqtrd 4679 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (((𝐹𝑃)↑𝑘) · (𝐹𝑎)) ≤ ((𝐹𝑃)↑𝑘))
307144rpred 11872 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → 𝑆 ∈ ℝ)
308307adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 𝑆 ∈ ℝ)
309142adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹𝑃) ∈ ℝ+)
310309rpge0d 11876 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 0 ≤ (𝐹𝑃))
311174adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 𝑝 ∈ ℕ)
312311, 101syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 𝑝 ∈ ℚ)
313195, 312, 136syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹𝑝) ∈ ℝ)
314 max1 12016 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝐹𝑃) ∈ ℝ ∧ (𝐹𝑝) ∈ ℝ) → (𝐹𝑃) ≤ if((𝐹𝑃) ≤ (𝐹𝑝), (𝐹𝑝), (𝐹𝑃)))
315244, 313, 314syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹𝑃) ≤ if((𝐹𝑃) ≤ (𝐹𝑝), (𝐹𝑝), (𝐹𝑃)))
316315, 134syl6breqr 4695 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹𝑃) ≤ 𝑆)
317 leexp1a 12919 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐹𝑃) ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (0 ≤ (𝐹𝑃) ∧ (𝐹𝑃) ≤ 𝑆)) → ((𝐹𝑃)↑𝑘) ≤ (𝑆𝑘))
318244, 308, 239, 310, 316, 317syl32anc 1334 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ((𝐹𝑃)↑𝑘) ≤ (𝑆𝑘))
319248, 245, 224, 306, 318letrd 10194 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (((𝐹𝑃)↑𝑘) · (𝐹𝑎)) ≤ (𝑆𝑘))
320243, 319eqbrtrd 4675 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹‘((𝑃𝑘) · 𝑎)) ≤ (𝑆𝑘))
32111, 13, 235abvmul 18829 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐹𝐴 ∧ (𝑝𝑘) ∈ ℚ ∧ 𝑏 ∈ ℚ) → (𝐹‘((𝑝𝑘) · 𝑏)) = ((𝐹‘(𝑝𝑘)) · (𝐹𝑏)))
322195, 206, 209, 321syl3anc 1326 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹‘((𝑝𝑘) · 𝑏)) = ((𝐹‘(𝑝𝑘)) · (𝐹𝑏)))
32312, 11qabvexp 25315 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐹𝐴𝑝 ∈ ℚ ∧ 𝑘 ∈ ℕ0) → (𝐹‘(𝑝𝑘)) = ((𝐹𝑝)↑𝑘))
324195, 312, 239, 323syl3anc 1326 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹‘(𝑝𝑘)) = ((𝐹𝑝)↑𝑘))
325324oveq1d 6665 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ((𝐹‘(𝑝𝑘)) · (𝐹𝑏)) = (((𝐹𝑝)↑𝑘) · (𝐹𝑏)))
326322, 325eqtrd 2656 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹‘((𝑝𝑘) · 𝑏)) = (((𝐹𝑝)↑𝑘) · (𝐹𝑏)))
327313, 239reexpcld 13025 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ((𝐹𝑝)↑𝑘) ∈ ℝ)
32811, 13abvcl 18824 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐹𝐴𝑏 ∈ ℚ) → (𝐹𝑏) ∈ ℝ)
329195, 209, 328syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹𝑏) ∈ ℝ)
330327, 329remulcld 10070 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (((𝐹𝑝)↑𝑘) · (𝐹𝑏)) ∈ ℝ)
331 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑎 = 𝑏 → (𝐹𝑎) = (𝐹𝑏))
332331breq1d 4663 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑎 = 𝑏 → ((𝐹𝑎) ≤ 1 ↔ (𝐹𝑏) ≤ 1))
333332rspcv 3305 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑏 ∈ ℤ → (∀𝑎 ∈ ℤ (𝐹𝑎) ≤ 1 → (𝐹𝑏) ≤ 1))
334207, 293, 333sylc 65 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹𝑏) ≤ 1)
335311nnne0d 11065 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 𝑝 ≠ 0)
336195, 312, 335, 138syl3anc 1326 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 0 < (𝐹𝑝))
337 expgt0 12893 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝐹𝑝) ∈ ℝ ∧ 𝑘 ∈ ℤ ∧ 0 < (𝐹𝑝)) → 0 < ((𝐹𝑝)↑𝑘))
338313, 297, 336, 337syl3anc 1326 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 0 < ((𝐹𝑝)↑𝑘))
339 lemul2 10876 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝐹𝑏) ∈ ℝ ∧ 1 ∈ ℝ ∧ (((𝐹𝑝)↑𝑘) ∈ ℝ ∧ 0 < ((𝐹𝑝)↑𝑘))) → ((𝐹𝑏) ≤ 1 ↔ (((𝐹𝑝)↑𝑘) · (𝐹𝑏)) ≤ (((𝐹𝑝)↑𝑘) · 1)))
340329, 296, 327, 338, 339syl112anc 1330 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ((𝐹𝑏) ≤ 1 ↔ (((𝐹𝑝)↑𝑘) · (𝐹𝑏)) ≤ (((𝐹𝑝)↑𝑘) · 1)))
341334, 340mpbid 222 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (((𝐹𝑝)↑𝑘) · (𝐹𝑏)) ≤ (((𝐹𝑝)↑𝑘) · 1))
342327recnd 10068 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ((𝐹𝑝)↑𝑘) ∈ ℂ)
343342mulid1d 10057 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (((𝐹𝑝)↑𝑘) · 1) = ((𝐹𝑝)↑𝑘))
344341, 343breqtrd 4679 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (((𝐹𝑝)↑𝑘) · (𝐹𝑏)) ≤ ((𝐹𝑝)↑𝑘))
345141adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹𝑝) ∈ ℝ+)
346345rpge0d 11876 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 0 ≤ (𝐹𝑝))
347 max2 12018 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝐹𝑃) ∈ ℝ ∧ (𝐹𝑝) ∈ ℝ) → (𝐹𝑝) ≤ if((𝐹𝑃) ≤ (𝐹𝑝), (𝐹𝑝), (𝐹𝑃)))
348244, 313, 347syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹𝑝) ≤ if((𝐹𝑃) ≤ (𝐹𝑝), (𝐹𝑝), (𝐹𝑃)))
349348, 134syl6breqr 4695 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹𝑝) ≤ 𝑆)
350 leexp1a 12919 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐹𝑝) ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (0 ≤ (𝐹𝑝) ∧ (𝐹𝑝) ≤ 𝑆)) → ((𝐹𝑝)↑𝑘) ≤ (𝑆𝑘))
351313, 308, 239, 346, 349, 350syl32anc 1334 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ((𝐹𝑝)↑𝑘) ≤ (𝑆𝑘))
352330, 327, 224, 344, 351letrd 10194 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (((𝐹𝑝)↑𝑘) · (𝐹𝑏)) ≤ (𝑆𝑘))
353326, 352eqbrtrd 4675 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹‘((𝑝𝑘) · 𝑏)) ≤ (𝑆𝑘))
354217, 219, 224, 224, 320, 353le2addd 10646 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ((𝐹‘((𝑃𝑘) · 𝑎)) + (𝐹‘((𝑝𝑘) · 𝑏))) ≤ ((𝑆𝑘) + (𝑆𝑘)))
355222rpcnd 11874 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → (𝑆𝑘) ∈ ℂ)
3563552timesd 11275 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → (2 · (𝑆𝑘)) = ((𝑆𝑘) + (𝑆𝑘)))
357356adantrr 753 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (2 · (𝑆𝑘)) = ((𝑆𝑘) + (𝑆𝑘)))
358354, 357breqtrrd 4681 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ((𝐹‘((𝑃𝑘) · 𝑎)) + (𝐹‘((𝑝𝑘) · 𝑏))) ≤ (2 · (𝑆𝑘)))
359215, 220, 226, 232, 358letrd 10194 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹‘(((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏))) ≤ (2 · (𝑆𝑘)))
360 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . 23 (1 = (((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏)) → (𝐹‘1) = (𝐹‘(((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏))))
361360breq1d 4663 . . . . . . . . . . . . . . . . . . . . . 22 (1 = (((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏)) → ((𝐹‘1) ≤ (2 · (𝑆𝑘)) ↔ (𝐹‘(((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏))) ≤ (2 · (𝑆𝑘))))
362359, 361syl5ibrcom 237 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (1 = (((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏)) → (𝐹‘1) ≤ (2 · (𝑆𝑘))))
363194, 362sylbid 230 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (((𝑃𝑘) gcd (𝑝𝑘)) = (((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏)) → (𝐹‘1) ≤ (2 · (𝑆𝑘))))
364363anassrs 680 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (((𝑃𝑘) gcd (𝑝𝑘)) = (((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏)) → (𝐹‘1) ≤ (2 · (𝑆𝑘))))
365364rexlimdvva 3038 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ ((𝑃𝑘) gcd (𝑝𝑘)) = (((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏)) → (𝐹‘1) ≤ (2 · (𝑆𝑘))))
366179, 365mpd 15 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → (𝐹‘1) ≤ (2 · (𝑆𝑘)))
367168, 366eqbrtrrd 4677 . . . . . . . . . . . . . . . 16 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → 1 ≤ (2 · (𝑆𝑘)))
368222rpregt0d 11878 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → ((𝑆𝑘) ∈ ℝ ∧ 0 < (𝑆𝑘)))
369 ledivmul2 10902 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℝ ∧ 2 ∈ ℝ ∧ ((𝑆𝑘) ∈ ℝ ∧ 0 < (𝑆𝑘))) → ((1 / (𝑆𝑘)) ≤ 2 ↔ 1 ≤ (2 · (𝑆𝑘))))
370264, 132, 369mp3an12 1414 . . . . . . . . . . . . . . . . 17 (((𝑆𝑘) ∈ ℝ ∧ 0 < (𝑆𝑘)) → ((1 / (𝑆𝑘)) ≤ 2 ↔ 1 ≤ (2 · (𝑆𝑘))))
371368, 370syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → ((1 / (𝑆𝑘)) ≤ 2 ↔ 1 ≤ (2 · (𝑆𝑘))))
372367, 371mpbird 247 . . . . . . . . . . . . . . 15 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → (1 / (𝑆𝑘)) ≤ 2)
373163, 372eqbrtrd 4675 . . . . . . . . . . . . . 14 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → ((1 / 𝑆)↑𝑘) ≤ 2)
374 reexpcl 12877 . . . . . . . . . . . . . . . 16 (((1 / 𝑆) ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((1 / 𝑆)↑𝑘) ∈ ℝ)
375145, 170, 374syl2an 494 . . . . . . . . . . . . . . 15 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → ((1 / 𝑆)↑𝑘) ∈ ℝ)
376 lenlt 10116 . . . . . . . . . . . . . . 15 ((((1 / 𝑆)↑𝑘) ∈ ℝ ∧ 2 ∈ ℝ) → (((1 / 𝑆)↑𝑘) ≤ 2 ↔ ¬ 2 < ((1 / 𝑆)↑𝑘)))
377375, 132, 376sylancl 694 . . . . . . . . . . . . . 14 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → (((1 / 𝑆)↑𝑘) ≤ 2 ↔ ¬ 2 < ((1 / 𝑆)↑𝑘)))
378373, 377mpbid 222 . . . . . . . . . . . . 13 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → ¬ 2 < ((1 / 𝑆)↑𝑘))
379378pm2.21d 118 . . . . . . . . . . . 12 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → (2 < ((1 / 𝑆)↑𝑘) → ¬ (𝐹𝑝) < 1))
380379rexlimdva 3031 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → (∃𝑘 ∈ ℕ 2 < ((1 / 𝑆)↑𝑘) → ¬ (𝐹𝑝) < 1))
381156, 380mpd 15 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → ¬ (𝐹𝑝) < 1)
382381expr 643 . . . . . . . . 9 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → ((𝐹𝑝) < 1 → ¬ (𝐹𝑝) < 1))
383382pm2.01d 181 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → ¬ (𝐹𝑝) < 1)
384260ad2antrr 762 . . . . . . . . 9 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → ∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛))
385 fveq2 6191 . . . . . . . . . . . 12 (𝑛 = 𝑝 → (𝐹𝑛) = (𝐹𝑝))
386385breq2d 4665 . . . . . . . . . . 11 (𝑛 = 𝑝 → (1 < (𝐹𝑛) ↔ 1 < (𝐹𝑝)))
387386notbid 308 . . . . . . . . . 10 (𝑛 = 𝑝 → (¬ 1 < (𝐹𝑛) ↔ ¬ 1 < (𝐹𝑝)))
388387rspcv 3305 . . . . . . . . 9 (𝑝 ∈ ℕ → (∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛) → ¬ 1 < (𝐹𝑝)))
389100, 384, 388sylc 65 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → ¬ 1 < (𝐹𝑝))
390 lttri3 10121 . . . . . . . . 9 (((𝐹𝑝) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝐹𝑝) = 1 ↔ (¬ (𝐹𝑝) < 1 ∧ ¬ 1 < (𝐹𝑝))))
391137, 264, 390sylancl 694 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → ((𝐹𝑝) = 1 ↔ (¬ (𝐹𝑝) < 1 ∧ ¬ 1 < (𝐹𝑝))))
392383, 389, 391mpbir2and 957 . . . . . . 7 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → (𝐹𝑝) = 1)
393109, 131, 3923eqtr4d 2666 . . . . . 6 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → (((𝐽𝑃)‘𝑝)↑𝑐𝑅) = (𝐹𝑝))
394107, 393eqtr2d 2657 . . . . 5 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → (𝐹𝑝) = ((𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅))‘𝑝))
395394ex 450 . . . 4 ((𝜑𝑝 ∈ ℙ) → (𝑃𝑝 → (𝐹𝑝) = ((𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅))‘𝑝)))
39698, 395pm2.61dne 2880 . . 3 ((𝜑𝑝 ∈ ℙ) → (𝐹𝑝) = ((𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅))‘𝑝))
39712, 11, 2, 47, 396ostthlem2 25317 . 2 (𝜑𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅)))
398 oveq2 6658 . . . . 5 (𝑎 = 𝑅 → (((𝐽𝑃)‘𝑦)↑𝑐𝑎) = (((𝐽𝑃)‘𝑦)↑𝑐𝑅))
399398mpteq2dv 4745 . . . 4 (𝑎 = 𝑅 → (𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑎)) = (𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅)))
400399eqeq2d 2632 . . 3 (𝑎 = 𝑅 → (𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑎)) ↔ 𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅))))
401400rspcev 3309 . 2 ((𝑅 ∈ ℝ+𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅))) → ∃𝑎 ∈ ℝ+ 𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑎)))
40244, 397, 401syl2anc 693 1 (𝜑 → ∃𝑎 ∈ ℝ+ 𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑎)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3o 1036   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  Vcvv 3200  ifcif 4086   class class class wbr 4653  cmpt 4729  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941   < clt 10074  cle 10075  -cneg 10267   / cdiv 10684  cn 11020  2c2 11070  0cn0 11292  cz 11377  cuz 11687  cq 11788  +crp 11832  cexp 12860  expce 14792  cdvds 14983   gcd cgcd 15216  cprime 15385   pCnt cpc 15541  s cress 15858  +gcplusg 15941  .rcmulr 15942  invgcminusg 17423  AbsValcabv 18816  fldccnfld 19746  logclog 24301  𝑐ccxp 24302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-dvds 14984  df-gcd 15217  df-prm 15386  df-pc 15542  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-mulg 17541  df-subg 17591  df-cntz 17750  df-cmn 18195  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-drng 18749  df-subrg 18778  df-abv 18817  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303  df-cxp 24304
This theorem is referenced by:  ostth  25328
  Copyright terms: Public domain W3C validator