MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divalglem2 Structured version   Visualization version   GIF version

Theorem divalglem2 15118
Description: Lemma for divalg 15126. (Contributed by Paul Chapman, 21-Mar-2011.) (Revised by AV, 2-Oct-2020.)
Hypotheses
Ref Expression
divalglem0.1 𝑁 ∈ ℤ
divalglem0.2 𝐷 ∈ ℤ
divalglem1.3 𝐷 ≠ 0
divalglem2.4 𝑆 = {𝑟 ∈ ℕ0𝐷 ∥ (𝑁𝑟)}
Assertion
Ref Expression
divalglem2 inf(𝑆, ℝ, < ) ∈ 𝑆
Distinct variable groups:   𝐷,𝑟   𝑁,𝑟
Allowed substitution hint:   𝑆(𝑟)

Proof of Theorem divalglem2
StepHypRef Expression
1 divalglem2.4 . . . 4 𝑆 = {𝑟 ∈ ℕ0𝐷 ∥ (𝑁𝑟)}
2 ssrab2 3687 . . . 4 {𝑟 ∈ ℕ0𝐷 ∥ (𝑁𝑟)} ⊆ ℕ0
31, 2eqsstri 3635 . . 3 𝑆 ⊆ ℕ0
4 nn0uz 11722 . . 3 0 = (ℤ‘0)
53, 4sseqtri 3637 . 2 𝑆 ⊆ (ℤ‘0)
6 divalglem0.1 . . . . . 6 𝑁 ∈ ℤ
7 divalglem0.2 . . . . . . . . 9 𝐷 ∈ ℤ
8 zmulcl 11426 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝑁 · 𝐷) ∈ ℤ)
96, 7, 8mp2an 708 . . . . . . . 8 (𝑁 · 𝐷) ∈ ℤ
10 nn0abscl 14052 . . . . . . . 8 ((𝑁 · 𝐷) ∈ ℤ → (abs‘(𝑁 · 𝐷)) ∈ ℕ0)
119, 10ax-mp 5 . . . . . . 7 (abs‘(𝑁 · 𝐷)) ∈ ℕ0
1211nn0zi 11402 . . . . . 6 (abs‘(𝑁 · 𝐷)) ∈ ℤ
13 zaddcl 11417 . . . . . 6 ((𝑁 ∈ ℤ ∧ (abs‘(𝑁 · 𝐷)) ∈ ℤ) → (𝑁 + (abs‘(𝑁 · 𝐷))) ∈ ℤ)
146, 12, 13mp2an 708 . . . . 5 (𝑁 + (abs‘(𝑁 · 𝐷))) ∈ ℤ
15 divalglem1.3 . . . . . 6 𝐷 ≠ 0
166, 7, 15divalglem1 15117 . . . . 5 0 ≤ (𝑁 + (abs‘(𝑁 · 𝐷)))
17 elnn0z 11390 . . . . 5 ((𝑁 + (abs‘(𝑁 · 𝐷))) ∈ ℕ0 ↔ ((𝑁 + (abs‘(𝑁 · 𝐷))) ∈ ℤ ∧ 0 ≤ (𝑁 + (abs‘(𝑁 · 𝐷)))))
1814, 16, 17mpbir2an 955 . . . 4 (𝑁 + (abs‘(𝑁 · 𝐷))) ∈ ℕ0
19 iddvds 14995 . . . . . . . 8 (𝐷 ∈ ℤ → 𝐷𝐷)
20 dvdsabsb 15001 . . . . . . . . 9 ((𝐷 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝐷𝐷𝐷 ∥ (abs‘𝐷)))
2120anidms 677 . . . . . . . 8 (𝐷 ∈ ℤ → (𝐷𝐷𝐷 ∥ (abs‘𝐷)))
2219, 21mpbid 222 . . . . . . 7 (𝐷 ∈ ℤ → 𝐷 ∥ (abs‘𝐷))
237, 22ax-mp 5 . . . . . 6 𝐷 ∥ (abs‘𝐷)
24 nn0abscl 14052 . . . . . . . . 9 (𝑁 ∈ ℤ → (abs‘𝑁) ∈ ℕ0)
256, 24ax-mp 5 . . . . . . . 8 (abs‘𝑁) ∈ ℕ0
2625nn0negzi 11416 . . . . . . 7 -(abs‘𝑁) ∈ ℤ
27 nn0abscl 14052 . . . . . . . . 9 (𝐷 ∈ ℤ → (abs‘𝐷) ∈ ℕ0)
287, 27ax-mp 5 . . . . . . . 8 (abs‘𝐷) ∈ ℕ0
2928nn0zi 11402 . . . . . . 7 (abs‘𝐷) ∈ ℤ
30 dvdsmultr2 15021 . . . . . . 7 ((𝐷 ∈ ℤ ∧ -(abs‘𝑁) ∈ ℤ ∧ (abs‘𝐷) ∈ ℤ) → (𝐷 ∥ (abs‘𝐷) → 𝐷 ∥ (-(abs‘𝑁) · (abs‘𝐷))))
317, 26, 29, 30mp3an 1424 . . . . . 6 (𝐷 ∥ (abs‘𝐷) → 𝐷 ∥ (-(abs‘𝑁) · (abs‘𝐷)))
3223, 31ax-mp 5 . . . . 5 𝐷 ∥ (-(abs‘𝑁) · (abs‘𝐷))
33 zcn 11382 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
346, 33ax-mp 5 . . . . . . . 8 𝑁 ∈ ℂ
35 zcn 11382 . . . . . . . . 9 (𝐷 ∈ ℤ → 𝐷 ∈ ℂ)
367, 35ax-mp 5 . . . . . . . 8 𝐷 ∈ ℂ
3734, 36absmuli 14143 . . . . . . 7 (abs‘(𝑁 · 𝐷)) = ((abs‘𝑁) · (abs‘𝐷))
3837negeqi 10274 . . . . . 6 -(abs‘(𝑁 · 𝐷)) = -((abs‘𝑁) · (abs‘𝐷))
39 df-neg 10269 . . . . . . 7 -(abs‘(𝑁 · 𝐷)) = (0 − (abs‘(𝑁 · 𝐷)))
4034subidi 10352 . . . . . . . 8 (𝑁𝑁) = 0
4140oveq1i 6660 . . . . . . 7 ((𝑁𝑁) − (abs‘(𝑁 · 𝐷))) = (0 − (abs‘(𝑁 · 𝐷)))
4211nn0cni 11304 . . . . . . . 8 (abs‘(𝑁 · 𝐷)) ∈ ℂ
43 subsub4 10314 . . . . . . . 8 ((𝑁 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ (abs‘(𝑁 · 𝐷)) ∈ ℂ) → ((𝑁𝑁) − (abs‘(𝑁 · 𝐷))) = (𝑁 − (𝑁 + (abs‘(𝑁 · 𝐷)))))
4434, 34, 42, 43mp3an 1424 . . . . . . 7 ((𝑁𝑁) − (abs‘(𝑁 · 𝐷))) = (𝑁 − (𝑁 + (abs‘(𝑁 · 𝐷))))
4539, 41, 443eqtr2ri 2651 . . . . . 6 (𝑁 − (𝑁 + (abs‘(𝑁 · 𝐷)))) = -(abs‘(𝑁 · 𝐷))
4634abscli 14134 . . . . . . . 8 (abs‘𝑁) ∈ ℝ
4746recni 10052 . . . . . . 7 (abs‘𝑁) ∈ ℂ
4836abscli 14134 . . . . . . . 8 (abs‘𝐷) ∈ ℝ
4948recni 10052 . . . . . . 7 (abs‘𝐷) ∈ ℂ
5047, 49mulneg1i 10476 . . . . . 6 (-(abs‘𝑁) · (abs‘𝐷)) = -((abs‘𝑁) · (abs‘𝐷))
5138, 45, 503eqtr4i 2654 . . . . 5 (𝑁 − (𝑁 + (abs‘(𝑁 · 𝐷)))) = (-(abs‘𝑁) · (abs‘𝐷))
5232, 51breqtrri 4680 . . . 4 𝐷 ∥ (𝑁 − (𝑁 + (abs‘(𝑁 · 𝐷))))
53 oveq2 6658 . . . . . 6 (𝑟 = (𝑁 + (abs‘(𝑁 · 𝐷))) → (𝑁𝑟) = (𝑁 − (𝑁 + (abs‘(𝑁 · 𝐷)))))
5453breq2d 4665 . . . . 5 (𝑟 = (𝑁 + (abs‘(𝑁 · 𝐷))) → (𝐷 ∥ (𝑁𝑟) ↔ 𝐷 ∥ (𝑁 − (𝑁 + (abs‘(𝑁 · 𝐷))))))
5554, 1elrab2 3366 . . . 4 ((𝑁 + (abs‘(𝑁 · 𝐷))) ∈ 𝑆 ↔ ((𝑁 + (abs‘(𝑁 · 𝐷))) ∈ ℕ0𝐷 ∥ (𝑁 − (𝑁 + (abs‘(𝑁 · 𝐷))))))
5618, 52, 55mpbir2an 955 . . 3 (𝑁 + (abs‘(𝑁 · 𝐷))) ∈ 𝑆
5756ne0ii 3923 . 2 𝑆 ≠ ∅
58 infssuzcl 11772 . 2 ((𝑆 ⊆ (ℤ‘0) ∧ 𝑆 ≠ ∅) → inf(𝑆, ℝ, < ) ∈ 𝑆)
595, 57, 58mp2an 708 1 inf(𝑆, ℝ, < ) ∈ 𝑆
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1483  wcel 1990  wne 2794  {crab 2916  wss 3574  c0 3915   class class class wbr 4653  cfv 5888  (class class class)co 6650  infcinf 8347  cc 9934  cr 9935  0cc0 9936   + caddc 9939   · cmul 9941   < clt 10074  cle 10075  cmin 10266  -cneg 10267  0cn0 11292  cz 11377  cuz 11687  abscabs 13974  cdvds 14983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984
This theorem is referenced by:  divalglem5  15120  divalglem9  15124
  Copyright terms: Public domain W3C validator