![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reasinsin | Structured version Visualization version GIF version |
Description: The arcsine function composed with sin is equal to the identity. (Contributed by Mario Carneiro, 2-Apr-2015.) |
Ref | Expression |
---|---|
reasinsin | ⊢ (𝐴 ∈ (-(π / 2)[,](π / 2)) → (arcsin‘(sin‘𝐴)) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neghalfpire 24217 | . . . . . 6 ⊢ -(π / 2) ∈ ℝ | |
2 | 1 | rexri 10097 | . . . . 5 ⊢ -(π / 2) ∈ ℝ* |
3 | halfpire 24216 | . . . . . 6 ⊢ (π / 2) ∈ ℝ | |
4 | 3 | rexri 10097 | . . . . 5 ⊢ (π / 2) ∈ ℝ* |
5 | pirp 24213 | . . . . . . . . . 10 ⊢ π ∈ ℝ+ | |
6 | rphalfcl 11858 | . . . . . . . . . 10 ⊢ (π ∈ ℝ+ → (π / 2) ∈ ℝ+) | |
7 | 5, 6 | ax-mp 5 | . . . . . . . . 9 ⊢ (π / 2) ∈ ℝ+ |
8 | rpgt0 11844 | . . . . . . . . 9 ⊢ ((π / 2) ∈ ℝ+ → 0 < (π / 2)) | |
9 | 7, 8 | ax-mp 5 | . . . . . . . 8 ⊢ 0 < (π / 2) |
10 | lt0neg2 10535 | . . . . . . . . 9 ⊢ ((π / 2) ∈ ℝ → (0 < (π / 2) ↔ -(π / 2) < 0)) | |
11 | 3, 10 | ax-mp 5 | . . . . . . . 8 ⊢ (0 < (π / 2) ↔ -(π / 2) < 0) |
12 | 9, 11 | mpbi 220 | . . . . . . 7 ⊢ -(π / 2) < 0 |
13 | 0re 10040 | . . . . . . . 8 ⊢ 0 ∈ ℝ | |
14 | 1, 13, 3 | lttri 10163 | . . . . . . 7 ⊢ ((-(π / 2) < 0 ∧ 0 < (π / 2)) → -(π / 2) < (π / 2)) |
15 | 12, 9, 14 | mp2an 708 | . . . . . 6 ⊢ -(π / 2) < (π / 2) |
16 | 1, 3, 15 | ltleii 10160 | . . . . 5 ⊢ -(π / 2) ≤ (π / 2) |
17 | prunioo 12301 | . . . . 5 ⊢ ((-(π / 2) ∈ ℝ* ∧ (π / 2) ∈ ℝ* ∧ -(π / 2) ≤ (π / 2)) → ((-(π / 2)(,)(π / 2)) ∪ {-(π / 2), (π / 2)}) = (-(π / 2)[,](π / 2))) | |
18 | 2, 4, 16, 17 | mp3an 1424 | . . . 4 ⊢ ((-(π / 2)(,)(π / 2)) ∪ {-(π / 2), (π / 2)}) = (-(π / 2)[,](π / 2)) |
19 | 18 | eleq2i 2693 | . . 3 ⊢ (𝐴 ∈ ((-(π / 2)(,)(π / 2)) ∪ {-(π / 2), (π / 2)}) ↔ 𝐴 ∈ (-(π / 2)[,](π / 2))) |
20 | elun 3753 | . . 3 ⊢ (𝐴 ∈ ((-(π / 2)(,)(π / 2)) ∪ {-(π / 2), (π / 2)}) ↔ (𝐴 ∈ (-(π / 2)(,)(π / 2)) ∨ 𝐴 ∈ {-(π / 2), (π / 2)})) | |
21 | 19, 20 | bitr3i 266 | . 2 ⊢ (𝐴 ∈ (-(π / 2)[,](π / 2)) ↔ (𝐴 ∈ (-(π / 2)(,)(π / 2)) ∨ 𝐴 ∈ {-(π / 2), (π / 2)})) |
22 | elioore 12205 | . . . . 5 ⊢ (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 𝐴 ∈ ℝ) | |
23 | 22 | recnd 10068 | . . . 4 ⊢ (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 𝐴 ∈ ℂ) |
24 | 22 | rered 13964 | . . . . 5 ⊢ (𝐴 ∈ (-(π / 2)(,)(π / 2)) → (ℜ‘𝐴) = 𝐴) |
25 | id 22 | . . . . 5 ⊢ (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 𝐴 ∈ (-(π / 2)(,)(π / 2))) | |
26 | 24, 25 | eqeltrd 2701 | . . . 4 ⊢ (𝐴 ∈ (-(π / 2)(,)(π / 2)) → (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) |
27 | asinsin 24619 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (arcsin‘(sin‘𝐴)) = 𝐴) | |
28 | 23, 26, 27 | syl2anc 693 | . . 3 ⊢ (𝐴 ∈ (-(π / 2)(,)(π / 2)) → (arcsin‘(sin‘𝐴)) = 𝐴) |
29 | elpri 4197 | . . . 4 ⊢ (𝐴 ∈ {-(π / 2), (π / 2)} → (𝐴 = -(π / 2) ∨ 𝐴 = (π / 2))) | |
30 | ax-1cn 9994 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
31 | asinneg 24613 | . . . . . . . 8 ⊢ (1 ∈ ℂ → (arcsin‘-1) = -(arcsin‘1)) | |
32 | 30, 31 | ax-mp 5 | . . . . . . 7 ⊢ (arcsin‘-1) = -(arcsin‘1) |
33 | asin1 24621 | . . . . . . . 8 ⊢ (arcsin‘1) = (π / 2) | |
34 | 33 | negeqi 10274 | . . . . . . 7 ⊢ -(arcsin‘1) = -(π / 2) |
35 | 32, 34 | eqtri 2644 | . . . . . 6 ⊢ (arcsin‘-1) = -(π / 2) |
36 | fveq2 6191 | . . . . . . . 8 ⊢ (𝐴 = -(π / 2) → (sin‘𝐴) = (sin‘-(π / 2))) | |
37 | 3 | recni 10052 | . . . . . . . . . 10 ⊢ (π / 2) ∈ ℂ |
38 | sinneg 14876 | . . . . . . . . . 10 ⊢ ((π / 2) ∈ ℂ → (sin‘-(π / 2)) = -(sin‘(π / 2))) | |
39 | 37, 38 | ax-mp 5 | . . . . . . . . 9 ⊢ (sin‘-(π / 2)) = -(sin‘(π / 2)) |
40 | sinhalfpi 24220 | . . . . . . . . . 10 ⊢ (sin‘(π / 2)) = 1 | |
41 | 40 | negeqi 10274 | . . . . . . . . 9 ⊢ -(sin‘(π / 2)) = -1 |
42 | 39, 41 | eqtri 2644 | . . . . . . . 8 ⊢ (sin‘-(π / 2)) = -1 |
43 | 36, 42 | syl6eq 2672 | . . . . . . 7 ⊢ (𝐴 = -(π / 2) → (sin‘𝐴) = -1) |
44 | 43 | fveq2d 6195 | . . . . . 6 ⊢ (𝐴 = -(π / 2) → (arcsin‘(sin‘𝐴)) = (arcsin‘-1)) |
45 | id 22 | . . . . . 6 ⊢ (𝐴 = -(π / 2) → 𝐴 = -(π / 2)) | |
46 | 35, 44, 45 | 3eqtr4a 2682 | . . . . 5 ⊢ (𝐴 = -(π / 2) → (arcsin‘(sin‘𝐴)) = 𝐴) |
47 | fveq2 6191 | . . . . . . . 8 ⊢ (𝐴 = (π / 2) → (sin‘𝐴) = (sin‘(π / 2))) | |
48 | 47, 40 | syl6eq 2672 | . . . . . . 7 ⊢ (𝐴 = (π / 2) → (sin‘𝐴) = 1) |
49 | 48 | fveq2d 6195 | . . . . . 6 ⊢ (𝐴 = (π / 2) → (arcsin‘(sin‘𝐴)) = (arcsin‘1)) |
50 | id 22 | . . . . . 6 ⊢ (𝐴 = (π / 2) → 𝐴 = (π / 2)) | |
51 | 33, 49, 50 | 3eqtr4a 2682 | . . . . 5 ⊢ (𝐴 = (π / 2) → (arcsin‘(sin‘𝐴)) = 𝐴) |
52 | 46, 51 | jaoi 394 | . . . 4 ⊢ ((𝐴 = -(π / 2) ∨ 𝐴 = (π / 2)) → (arcsin‘(sin‘𝐴)) = 𝐴) |
53 | 29, 52 | syl 17 | . . 3 ⊢ (𝐴 ∈ {-(π / 2), (π / 2)} → (arcsin‘(sin‘𝐴)) = 𝐴) |
54 | 28, 53 | jaoi 394 | . 2 ⊢ ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∨ 𝐴 ∈ {-(π / 2), (π / 2)}) → (arcsin‘(sin‘𝐴)) = 𝐴) |
55 | 21, 54 | sylbi 207 | 1 ⊢ (𝐴 ∈ (-(π / 2)[,](π / 2)) → (arcsin‘(sin‘𝐴)) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∨ wo 383 = wceq 1483 ∈ wcel 1990 ∪ cun 3572 {cpr 4179 class class class wbr 4653 ‘cfv 5888 (class class class)co 6650 ℂcc 9934 ℝcr 9935 0cc0 9936 1c1 9937 ℝ*cxr 10073 < clt 10074 ≤ cle 10075 -cneg 10267 / cdiv 10684 2c2 11070 ℝ+crp 11832 (,)cioo 12175 [,]cicc 12178 ℜcre 13837 sincsin 14794 πcpi 14797 arcsincasin 24589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 ax-addf 10015 ax-mulf 10016 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-of 6897 df-om 7066 df-1st 7168 df-2nd 7169 df-supp 7296 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-oadd 7564 df-er 7742 df-map 7859 df-pm 7860 df-ixp 7909 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-fsupp 8276 df-fi 8317 df-sup 8348 df-inf 8349 df-oi 8415 df-card 8765 df-cda 8990 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-z 11378 df-dec 11494 df-uz 11688 df-q 11789 df-rp 11833 df-xneg 11946 df-xadd 11947 df-xmul 11948 df-ioo 12179 df-ioc 12180 df-ico 12181 df-icc 12182 df-fz 12327 df-fzo 12466 df-fl 12593 df-mod 12669 df-seq 12802 df-exp 12861 df-fac 13061 df-bc 13090 df-hash 13118 df-shft 13807 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-limsup 14202 df-clim 14219 df-rlim 14220 df-sum 14417 df-ef 14798 df-sin 14800 df-cos 14801 df-pi 14803 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-mulr 15955 df-starv 15956 df-sca 15957 df-vsca 15958 df-ip 15959 df-tset 15960 df-ple 15961 df-ds 15964 df-unif 15965 df-hom 15966 df-cco 15967 df-rest 16083 df-topn 16084 df-0g 16102 df-gsum 16103 df-topgen 16104 df-pt 16105 df-prds 16108 df-xrs 16162 df-qtop 16167 df-imas 16168 df-xps 16170 df-mre 16246 df-mrc 16247 df-acs 16249 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-submnd 17336 df-mulg 17541 df-cntz 17750 df-cmn 18195 df-psmet 19738 df-xmet 19739 df-met 19740 df-bl 19741 df-mopn 19742 df-fbas 19743 df-fg 19744 df-cnfld 19747 df-top 20699 df-topon 20716 df-topsp 20737 df-bases 20750 df-cld 20823 df-ntr 20824 df-cls 20825 df-nei 20902 df-lp 20940 df-perf 20941 df-cn 21031 df-cnp 21032 df-haus 21119 df-tx 21365 df-hmeo 21558 df-fil 21650 df-fm 21742 df-flim 21743 df-flf 21744 df-xms 22125 df-ms 22126 df-tms 22127 df-cncf 22681 df-limc 23630 df-dv 23631 df-log 24303 df-asin 24592 |
This theorem is referenced by: asinrebnd 24628 |
Copyright terms: Public domain | W3C validator |