Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sqwvfourb Structured version   Visualization version   GIF version

Theorem sqwvfourb 40446
Description: Fourier series 𝐵 coefficients for the square wave function. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
sqwvfourb.t 𝑇 = (2 · π)
sqwvfourb.f 𝐹 = (𝑥 ∈ ℝ ↦ if((𝑥 mod 𝑇) < π, 1, -1))
sqwvfourb.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
sqwvfourb (𝜑 → (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥 / π) = if(2 ∥ 𝑁, 0, (4 / (𝑁 · π))))
Distinct variable groups:   𝑥,𝑁   𝜑,𝑥
Allowed substitution hints:   𝑇(𝑥)   𝐹(𝑥)

Proof of Theorem sqwvfourb
StepHypRef Expression
1 pire 24210 . . . . . 6 π ∈ ℝ
21renegcli 10342 . . . . 5 -π ∈ ℝ
32a1i 11 . . . 4 (𝜑 → -π ∈ ℝ)
41a1i 11 . . . 4 (𝜑 → π ∈ ℝ)
5 0re 10040 . . . . . 6 0 ∈ ℝ
6 negpilt0 39492 . . . . . . 7 -π < 0
72, 5, 6ltleii 10160 . . . . . 6 -π ≤ 0
8 pipos 24212 . . . . . . 7 0 < π
95, 1, 8ltleii 10160 . . . . . 6 0 ≤ π
102, 1elicc2i 12239 . . . . . 6 (0 ∈ (-π[,]π) ↔ (0 ∈ ℝ ∧ -π ≤ 0 ∧ 0 ≤ π))
115, 7, 9, 10mpbir3an 1244 . . . . 5 0 ∈ (-π[,]π)
1211a1i 11 . . . 4 (𝜑 → 0 ∈ (-π[,]π))
13 elioore 12205 . . . . . . . 8 (𝑥 ∈ (-π(,)π) → 𝑥 ∈ ℝ)
1413adantl 482 . . . . . . 7 ((𝜑𝑥 ∈ (-π(,)π)) → 𝑥 ∈ ℝ)
15 1re 10039 . . . . . . . 8 1 ∈ ℝ
1615renegcli 10342 . . . . . . . 8 -1 ∈ ℝ
1715, 16keepel 4155 . . . . . . 7 if((𝑥 mod 𝑇) < π, 1, -1) ∈ ℝ
18 sqwvfourb.f . . . . . . . 8 𝐹 = (𝑥 ∈ ℝ ↦ if((𝑥 mod 𝑇) < π, 1, -1))
1918fvmpt2 6291 . . . . . . 7 ((𝑥 ∈ ℝ ∧ if((𝑥 mod 𝑇) < π, 1, -1) ∈ ℝ) → (𝐹𝑥) = if((𝑥 mod 𝑇) < π, 1, -1))
2014, 17, 19sylancl 694 . . . . . 6 ((𝜑𝑥 ∈ (-π(,)π)) → (𝐹𝑥) = if((𝑥 mod 𝑇) < π, 1, -1))
2117a1i 11 . . . . . . 7 ((𝜑𝑥 ∈ (-π(,)π)) → if((𝑥 mod 𝑇) < π, 1, -1) ∈ ℝ)
2221recnd 10068 . . . . . 6 ((𝜑𝑥 ∈ (-π(,)π)) → if((𝑥 mod 𝑇) < π, 1, -1) ∈ ℂ)
2320, 22eqeltrd 2701 . . . . 5 ((𝜑𝑥 ∈ (-π(,)π)) → (𝐹𝑥) ∈ ℂ)
24 sqwvfourb.n . . . . . . . . 9 (𝜑𝑁 ∈ ℕ)
2524nncnd 11036 . . . . . . . 8 (𝜑𝑁 ∈ ℂ)
2625adantr 481 . . . . . . 7 ((𝜑𝑥 ∈ (-π(,)π)) → 𝑁 ∈ ℂ)
2714recnd 10068 . . . . . . 7 ((𝜑𝑥 ∈ (-π(,)π)) → 𝑥 ∈ ℂ)
2826, 27mulcld 10060 . . . . . 6 ((𝜑𝑥 ∈ (-π(,)π)) → (𝑁 · 𝑥) ∈ ℂ)
2928sincld 14860 . . . . 5 ((𝜑𝑥 ∈ (-π(,)π)) → (sin‘(𝑁 · 𝑥)) ∈ ℂ)
3023, 29mulcld 10060 . . . 4 ((𝜑𝑥 ∈ (-π(,)π)) → ((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) ∈ ℂ)
31 elioore 12205 . . . . . . . . . 10 (𝑥 ∈ (-π(,)0) → 𝑥 ∈ ℝ)
3231, 17, 19sylancl 694 . . . . . . . . 9 (𝑥 ∈ (-π(,)0) → (𝐹𝑥) = if((𝑥 mod 𝑇) < π, 1, -1))
331a1i 11 . . . . . . . . . . 11 (𝑥 ∈ (-π(,)0) → π ∈ ℝ)
34 sqwvfourb.t . . . . . . . . . . . . . 14 𝑇 = (2 · π)
35 2rp 11837 . . . . . . . . . . . . . . 15 2 ∈ ℝ+
36 pirp 24213 . . . . . . . . . . . . . . 15 π ∈ ℝ+
37 rpmulcl 11855 . . . . . . . . . . . . . . 15 ((2 ∈ ℝ+ ∧ π ∈ ℝ+) → (2 · π) ∈ ℝ+)
3835, 36, 37mp2an 708 . . . . . . . . . . . . . 14 (2 · π) ∈ ℝ+
3934, 38eqeltri 2697 . . . . . . . . . . . . 13 𝑇 ∈ ℝ+
4039a1i 11 . . . . . . . . . . . 12 (𝑥 ∈ (-π(,)0) → 𝑇 ∈ ℝ+)
4131, 40modcld 12674 . . . . . . . . . . 11 (𝑥 ∈ (-π(,)0) → (𝑥 mod 𝑇) ∈ ℝ)
42 picn 24211 . . . . . . . . . . . . . . . . . 18 π ∈ ℂ
43422timesi 11147 . . . . . . . . . . . . . . . . 17 (2 · π) = (π + π)
4434, 43eqtri 2644 . . . . . . . . . . . . . . . 16 𝑇 = (π + π)
4544oveq2i 6661 . . . . . . . . . . . . . . 15 (-π + 𝑇) = (-π + (π + π))
462recni 10052 . . . . . . . . . . . . . . . 16 -π ∈ ℂ
4746, 42, 42addassi 10048 . . . . . . . . . . . . . . 15 ((-π + π) + π) = (-π + (π + π))
4842negidi 10350 . . . . . . . . . . . . . . . . . 18 (π + -π) = 0
4942, 46, 48addcomli 10228 . . . . . . . . . . . . . . . . 17 (-π + π) = 0
5049oveq1i 6660 . . . . . . . . . . . . . . . 16 ((-π + π) + π) = (0 + π)
5142addid2i 10224 . . . . . . . . . . . . . . . 16 (0 + π) = π
5250, 51eqtri 2644 . . . . . . . . . . . . . . 15 ((-π + π) + π) = π
5345, 47, 523eqtr2ri 2651 . . . . . . . . . . . . . 14 π = (-π + 𝑇)
5453a1i 11 . . . . . . . . . . . . 13 (𝑥 ∈ (-π(,)0) → π = (-π + 𝑇))
552a1i 11 . . . . . . . . . . . . . 14 (𝑥 ∈ (-π(,)0) → -π ∈ ℝ)
56 2re 11090 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
5756, 1remulcli 10054 . . . . . . . . . . . . . . . 16 (2 · π) ∈ ℝ
5834, 57eqeltri 2697 . . . . . . . . . . . . . . 15 𝑇 ∈ ℝ
5958a1i 11 . . . . . . . . . . . . . 14 (𝑥 ∈ (-π(,)0) → 𝑇 ∈ ℝ)
602rexri 10097 . . . . . . . . . . . . . . 15 -π ∈ ℝ*
61 0xr 10086 . . . . . . . . . . . . . . 15 0 ∈ ℝ*
62 ioogtlb 39717 . . . . . . . . . . . . . . 15 ((-π ∈ ℝ* ∧ 0 ∈ ℝ*𝑥 ∈ (-π(,)0)) → -π < 𝑥)
6360, 61, 62mp3an12 1414 . . . . . . . . . . . . . 14 (𝑥 ∈ (-π(,)0) → -π < 𝑥)
6455, 31, 59, 63ltadd1dd 10638 . . . . . . . . . . . . 13 (𝑥 ∈ (-π(,)0) → (-π + 𝑇) < (𝑥 + 𝑇))
6554, 64eqbrtrd 4675 . . . . . . . . . . . 12 (𝑥 ∈ (-π(,)0) → π < (𝑥 + 𝑇))
6658recni 10052 . . . . . . . . . . . . . . . . 17 𝑇 ∈ ℂ
6766mulid2i 10043 . . . . . . . . . . . . . . . 16 (1 · 𝑇) = 𝑇
6867eqcomi 2631 . . . . . . . . . . . . . . 15 𝑇 = (1 · 𝑇)
6968oveq2i 6661 . . . . . . . . . . . . . 14 (𝑥 + 𝑇) = (𝑥 + (1 · 𝑇))
7069oveq1i 6660 . . . . . . . . . . . . 13 ((𝑥 + 𝑇) mod 𝑇) = ((𝑥 + (1 · 𝑇)) mod 𝑇)
7131, 59readdcld 10069 . . . . . . . . . . . . . 14 (𝑥 ∈ (-π(,)0) → (𝑥 + 𝑇) ∈ ℝ)
72 0red 10041 . . . . . . . . . . . . . . 15 (𝑥 ∈ (-π(,)0) → 0 ∈ ℝ)
738a1i 11 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (-π(,)0) → 0 < π)
7472, 33, 71, 73, 65lttrd 10198 . . . . . . . . . . . . . . 15 (𝑥 ∈ (-π(,)0) → 0 < (𝑥 + 𝑇))
7572, 71, 74ltled 10185 . . . . . . . . . . . . . 14 (𝑥 ∈ (-π(,)0) → 0 ≤ (𝑥 + 𝑇))
76 iooltub 39735 . . . . . . . . . . . . . . . . 17 ((-π ∈ ℝ* ∧ 0 ∈ ℝ*𝑥 ∈ (-π(,)0)) → 𝑥 < 0)
7760, 61, 76mp3an12 1414 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (-π(,)0) → 𝑥 < 0)
7831, 72, 59, 77ltadd1dd 10638 . . . . . . . . . . . . . . 15 (𝑥 ∈ (-π(,)0) → (𝑥 + 𝑇) < (0 + 𝑇))
7959recnd 10068 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (-π(,)0) → 𝑇 ∈ ℂ)
8079addid2d 10237 . . . . . . . . . . . . . . 15 (𝑥 ∈ (-π(,)0) → (0 + 𝑇) = 𝑇)
8178, 80breqtrd 4679 . . . . . . . . . . . . . 14 (𝑥 ∈ (-π(,)0) → (𝑥 + 𝑇) < 𝑇)
82 modid 12695 . . . . . . . . . . . . . 14 ((((𝑥 + 𝑇) ∈ ℝ ∧ 𝑇 ∈ ℝ+) ∧ (0 ≤ (𝑥 + 𝑇) ∧ (𝑥 + 𝑇) < 𝑇)) → ((𝑥 + 𝑇) mod 𝑇) = (𝑥 + 𝑇))
8371, 40, 75, 81, 82syl22anc 1327 . . . . . . . . . . . . 13 (𝑥 ∈ (-π(,)0) → ((𝑥 + 𝑇) mod 𝑇) = (𝑥 + 𝑇))
84 1zzd 11408 . . . . . . . . . . . . . 14 (𝑥 ∈ (-π(,)0) → 1 ∈ ℤ)
85 modcyc 12705 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑇 ∈ ℝ+ ∧ 1 ∈ ℤ) → ((𝑥 + (1 · 𝑇)) mod 𝑇) = (𝑥 mod 𝑇))
8631, 40, 84, 85syl3anc 1326 . . . . . . . . . . . . 13 (𝑥 ∈ (-π(,)0) → ((𝑥 + (1 · 𝑇)) mod 𝑇) = (𝑥 mod 𝑇))
8770, 83, 863eqtr3a 2680 . . . . . . . . . . . 12 (𝑥 ∈ (-π(,)0) → (𝑥 + 𝑇) = (𝑥 mod 𝑇))
8865, 87breqtrd 4679 . . . . . . . . . . 11 (𝑥 ∈ (-π(,)0) → π < (𝑥 mod 𝑇))
8933, 41, 88ltnsymd 10186 . . . . . . . . . 10 (𝑥 ∈ (-π(,)0) → ¬ (𝑥 mod 𝑇) < π)
9089iffalsed 4097 . . . . . . . . 9 (𝑥 ∈ (-π(,)0) → if((𝑥 mod 𝑇) < π, 1, -1) = -1)
9132, 90eqtrd 2656 . . . . . . . 8 (𝑥 ∈ (-π(,)0) → (𝐹𝑥) = -1)
9291adantl 482 . . . . . . 7 ((𝜑𝑥 ∈ (-π(,)0)) → (𝐹𝑥) = -1)
9392oveq1d 6665 . . . . . 6 ((𝜑𝑥 ∈ (-π(,)0)) → ((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) = (-1 · (sin‘(𝑁 · 𝑥))))
9493mpteq2dva 4744 . . . . 5 (𝜑 → (𝑥 ∈ (-π(,)0) ↦ ((𝐹𝑥) · (sin‘(𝑁 · 𝑥)))) = (𝑥 ∈ (-π(,)0) ↦ (-1 · (sin‘(𝑁 · 𝑥)))))
95 neg1cn 11124 . . . . . . 7 -1 ∈ ℂ
9695a1i 11 . . . . . 6 (𝜑 → -1 ∈ ℂ)
9724nnred 11035 . . . . . . . . 9 (𝜑𝑁 ∈ ℝ)
9897adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ (-π(,)0)) → 𝑁 ∈ ℝ)
9931adantl 482 . . . . . . . 8 ((𝜑𝑥 ∈ (-π(,)0)) → 𝑥 ∈ ℝ)
10098, 99remulcld 10070 . . . . . . 7 ((𝜑𝑥 ∈ (-π(,)0)) → (𝑁 · 𝑥) ∈ ℝ)
101100resincld 14873 . . . . . 6 ((𝜑𝑥 ∈ (-π(,)0)) → (sin‘(𝑁 · 𝑥)) ∈ ℝ)
102 ioossicc 12259 . . . . . . . 8 (-π(,)0) ⊆ (-π[,]0)
103102a1i 11 . . . . . . 7 (𝜑 → (-π(,)0) ⊆ (-π[,]0))
104 ioombl 23333 . . . . . . . 8 (-π(,)0) ∈ dom vol
105104a1i 11 . . . . . . 7 (𝜑 → (-π(,)0) ∈ dom vol)
10697adantr 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (-π[,]0)) → 𝑁 ∈ ℝ)
107 iccssre 12255 . . . . . . . . . . . 12 ((-π ∈ ℝ ∧ 0 ∈ ℝ) → (-π[,]0) ⊆ ℝ)
1082, 5, 107mp2an 708 . . . . . . . . . . 11 (-π[,]0) ⊆ ℝ
109108sseli 3599 . . . . . . . . . 10 (𝑥 ∈ (-π[,]0) → 𝑥 ∈ ℝ)
110109adantl 482 . . . . . . . . 9 ((𝜑𝑥 ∈ (-π[,]0)) → 𝑥 ∈ ℝ)
111106, 110remulcld 10070 . . . . . . . 8 ((𝜑𝑥 ∈ (-π[,]0)) → (𝑁 · 𝑥) ∈ ℝ)
112111resincld 14873 . . . . . . 7 ((𝜑𝑥 ∈ (-π[,]0)) → (sin‘(𝑁 · 𝑥)) ∈ ℝ)
113 0red 10041 . . . . . . . 8 (𝜑 → 0 ∈ ℝ)
114 sincn 24198 . . . . . . . . . 10 sin ∈ (ℂ–cn→ℂ)
115114a1i 11 . . . . . . . . 9 (𝜑 → sin ∈ (ℂ–cn→ℂ))
116 ax-resscn 9993 . . . . . . . . . . . . 13 ℝ ⊆ ℂ
117108, 116sstri 3612 . . . . . . . . . . . 12 (-π[,]0) ⊆ ℂ
118117a1i 11 . . . . . . . . . . 11 (𝜑 → (-π[,]0) ⊆ ℂ)
119 ssid 3624 . . . . . . . . . . . 12 ℂ ⊆ ℂ
120119a1i 11 . . . . . . . . . . 11 (𝜑 → ℂ ⊆ ℂ)
121118, 25, 120constcncfg 40084 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (-π[,]0) ↦ 𝑁) ∈ ((-π[,]0)–cn→ℂ))
122118, 120idcncfg 40085 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (-π[,]0) ↦ 𝑥) ∈ ((-π[,]0)–cn→ℂ))
123121, 122mulcncf 23215 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (-π[,]0) ↦ (𝑁 · 𝑥)) ∈ ((-π[,]0)–cn→ℂ))
124115, 123cncfmpt1f 22716 . . . . . . . 8 (𝜑 → (𝑥 ∈ (-π[,]0) ↦ (sin‘(𝑁 · 𝑥))) ∈ ((-π[,]0)–cn→ℂ))
125 cniccibl 23607 . . . . . . . 8 ((-π ∈ ℝ ∧ 0 ∈ ℝ ∧ (𝑥 ∈ (-π[,]0) ↦ (sin‘(𝑁 · 𝑥))) ∈ ((-π[,]0)–cn→ℂ)) → (𝑥 ∈ (-π[,]0) ↦ (sin‘(𝑁 · 𝑥))) ∈ 𝐿1)
1263, 113, 124, 125syl3anc 1326 . . . . . . 7 (𝜑 → (𝑥 ∈ (-π[,]0) ↦ (sin‘(𝑁 · 𝑥))) ∈ 𝐿1)
127103, 105, 112, 126iblss 23571 . . . . . 6 (𝜑 → (𝑥 ∈ (-π(,)0) ↦ (sin‘(𝑁 · 𝑥))) ∈ 𝐿1)
12896, 101, 127iblmulc2 23597 . . . . 5 (𝜑 → (𝑥 ∈ (-π(,)0) ↦ (-1 · (sin‘(𝑁 · 𝑥)))) ∈ 𝐿1)
12994, 128eqeltrd 2701 . . . 4 (𝜑 → (𝑥 ∈ (-π(,)0) ↦ ((𝐹𝑥) · (sin‘(𝑁 · 𝑥)))) ∈ 𝐿1)
13060a1i 11 . . . . . . . . . . 11 (𝑥 ∈ (0(,)π) → -π ∈ ℝ*)
1311rexri 10097 . . . . . . . . . . . 12 π ∈ ℝ*
132131a1i 11 . . . . . . . . . . 11 (𝑥 ∈ (0(,)π) → π ∈ ℝ*)
133 elioore 12205 . . . . . . . . . . 11 (𝑥 ∈ (0(,)π) → 𝑥 ∈ ℝ)
1342a1i 11 . . . . . . . . . . . 12 (𝑥 ∈ (0(,)π) → -π ∈ ℝ)
135 0red 10041 . . . . . . . . . . . 12 (𝑥 ∈ (0(,)π) → 0 ∈ ℝ)
1366a1i 11 . . . . . . . . . . . 12 (𝑥 ∈ (0(,)π) → -π < 0)
137 ioogtlb 39717 . . . . . . . . . . . . 13 ((0 ∈ ℝ* ∧ π ∈ ℝ*𝑥 ∈ (0(,)π)) → 0 < 𝑥)
13861, 131, 137mp3an12 1414 . . . . . . . . . . . 12 (𝑥 ∈ (0(,)π) → 0 < 𝑥)
139134, 135, 133, 136, 138lttrd 10198 . . . . . . . . . . 11 (𝑥 ∈ (0(,)π) → -π < 𝑥)
140 iooltub 39735 . . . . . . . . . . . 12 ((0 ∈ ℝ* ∧ π ∈ ℝ*𝑥 ∈ (0(,)π)) → 𝑥 < π)
14161, 131, 140mp3an12 1414 . . . . . . . . . . 11 (𝑥 ∈ (0(,)π) → 𝑥 < π)
142130, 132, 133, 139, 141eliood 39720 . . . . . . . . . 10 (𝑥 ∈ (0(,)π) → 𝑥 ∈ (-π(,)π))
143142, 20sylan2 491 . . . . . . . . 9 ((𝜑𝑥 ∈ (0(,)π)) → (𝐹𝑥) = if((𝑥 mod 𝑇) < π, 1, -1))
14439a1i 11 . . . . . . . . . . . . 13 (𝑥 ∈ (0(,)π) → 𝑇 ∈ ℝ+)
145135, 133, 138ltled 10185 . . . . . . . . . . . . 13 (𝑥 ∈ (0(,)π) → 0 ≤ 𝑥)
1461a1i 11 . . . . . . . . . . . . . 14 (𝑥 ∈ (0(,)π) → π ∈ ℝ)
14758a1i 11 . . . . . . . . . . . . . 14 (𝑥 ∈ (0(,)π) → 𝑇 ∈ ℝ)
148 2timesgt 39500 . . . . . . . . . . . . . . . . 17 (π ∈ ℝ+ → π < (2 · π))
14936, 148ax-mp 5 . . . . . . . . . . . . . . . 16 π < (2 · π)
150149, 34breqtrri 4680 . . . . . . . . . . . . . . 15 π < 𝑇
151150a1i 11 . . . . . . . . . . . . . 14 (𝑥 ∈ (0(,)π) → π < 𝑇)
152133, 146, 147, 141, 151lttrd 10198 . . . . . . . . . . . . 13 (𝑥 ∈ (0(,)π) → 𝑥 < 𝑇)
153 modid 12695 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ ∧ 𝑇 ∈ ℝ+) ∧ (0 ≤ 𝑥𝑥 < 𝑇)) → (𝑥 mod 𝑇) = 𝑥)
154133, 144, 145, 152, 153syl22anc 1327 . . . . . . . . . . . 12 (𝑥 ∈ (0(,)π) → (𝑥 mod 𝑇) = 𝑥)
155154, 141eqbrtrd 4675 . . . . . . . . . . 11 (𝑥 ∈ (0(,)π) → (𝑥 mod 𝑇) < π)
156155iftrued 4094 . . . . . . . . . 10 (𝑥 ∈ (0(,)π) → if((𝑥 mod 𝑇) < π, 1, -1) = 1)
157156adantl 482 . . . . . . . . 9 ((𝜑𝑥 ∈ (0(,)π)) → if((𝑥 mod 𝑇) < π, 1, -1) = 1)
158143, 157eqtrd 2656 . . . . . . . 8 ((𝜑𝑥 ∈ (0(,)π)) → (𝐹𝑥) = 1)
159158oveq1d 6665 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)π)) → ((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) = (1 · (sin‘(𝑁 · 𝑥))))
160142, 29sylan2 491 . . . . . . . 8 ((𝜑𝑥 ∈ (0(,)π)) → (sin‘(𝑁 · 𝑥)) ∈ ℂ)
161160mulid2d 10058 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)π)) → (1 · (sin‘(𝑁 · 𝑥))) = (sin‘(𝑁 · 𝑥)))
162159, 161eqtrd 2656 . . . . . 6 ((𝜑𝑥 ∈ (0(,)π)) → ((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) = (sin‘(𝑁 · 𝑥)))
163162mpteq2dva 4744 . . . . 5 (𝜑 → (𝑥 ∈ (0(,)π) ↦ ((𝐹𝑥) · (sin‘(𝑁 · 𝑥)))) = (𝑥 ∈ (0(,)π) ↦ (sin‘(𝑁 · 𝑥))))
164 ioossicc 12259 . . . . . . 7 (0(,)π) ⊆ (0[,]π)
165164a1i 11 . . . . . 6 (𝜑 → (0(,)π) ⊆ (0[,]π))
166 ioombl 23333 . . . . . . 7 (0(,)π) ∈ dom vol
167166a1i 11 . . . . . 6 (𝜑 → (0(,)π) ∈ dom vol)
16897adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ (0[,]π)) → 𝑁 ∈ ℝ)
169 iccssre 12255 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ π ∈ ℝ) → (0[,]π) ⊆ ℝ)
1705, 1, 169mp2an 708 . . . . . . . . . 10 (0[,]π) ⊆ ℝ
171170sseli 3599 . . . . . . . . 9 (𝑥 ∈ (0[,]π) → 𝑥 ∈ ℝ)
172171adantl 482 . . . . . . . 8 ((𝜑𝑥 ∈ (0[,]π)) → 𝑥 ∈ ℝ)
173168, 172remulcld 10070 . . . . . . 7 ((𝜑𝑥 ∈ (0[,]π)) → (𝑁 · 𝑥) ∈ ℝ)
174173resincld 14873 . . . . . 6 ((𝜑𝑥 ∈ (0[,]π)) → (sin‘(𝑁 · 𝑥)) ∈ ℝ)
175170, 116sstri 3612 . . . . . . . . . . 11 (0[,]π) ⊆ ℂ
176175a1i 11 . . . . . . . . . 10 (𝜑 → (0[,]π) ⊆ ℂ)
177176, 25, 120constcncfg 40084 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (0[,]π) ↦ 𝑁) ∈ ((0[,]π)–cn→ℂ))
178176, 120idcncfg 40085 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (0[,]π) ↦ 𝑥) ∈ ((0[,]π)–cn→ℂ))
179177, 178mulcncf 23215 . . . . . . . 8 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (𝑁 · 𝑥)) ∈ ((0[,]π)–cn→ℂ))
180115, 179cncfmpt1f 22716 . . . . . . 7 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (sin‘(𝑁 · 𝑥))) ∈ ((0[,]π)–cn→ℂ))
181 cniccibl 23607 . . . . . . 7 ((0 ∈ ℝ ∧ π ∈ ℝ ∧ (𝑥 ∈ (0[,]π) ↦ (sin‘(𝑁 · 𝑥))) ∈ ((0[,]π)–cn→ℂ)) → (𝑥 ∈ (0[,]π) ↦ (sin‘(𝑁 · 𝑥))) ∈ 𝐿1)
182113, 4, 180, 181syl3anc 1326 . . . . . 6 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (sin‘(𝑁 · 𝑥))) ∈ 𝐿1)
183165, 167, 174, 182iblss 23571 . . . . 5 (𝜑 → (𝑥 ∈ (0(,)π) ↦ (sin‘(𝑁 · 𝑥))) ∈ 𝐿1)
184163, 183eqeltrd 2701 . . . 4 (𝜑 → (𝑥 ∈ (0(,)π) ↦ ((𝐹𝑥) · (sin‘(𝑁 · 𝑥)))) ∈ 𝐿1)
1853, 4, 12, 30, 129, 184itgsplitioo 23604 . . 3 (𝜑 → ∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥 = (∫(-π(,)0)((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥 + ∫(0(,)π)((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥))
186185oveq1d 6665 . 2 (𝜑 → (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥 / π) = ((∫(-π(,)0)((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥 + ∫(0(,)π)((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥) / π))
18791oveq1d 6665 . . . . . . . . 9 (𝑥 ∈ (-π(,)0) → ((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) = (-1 · (sin‘(𝑁 · 𝑥))))
188187adantl 482 . . . . . . . 8 ((𝜑𝑥 ∈ (-π(,)0)) → ((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) = (-1 · (sin‘(𝑁 · 𝑥))))
18960a1i 11 . . . . . . . . . . 11 (𝑥 ∈ (-π(,)0) → -π ∈ ℝ*)
190131a1i 11 . . . . . . . . . . 11 (𝑥 ∈ (-π(,)0) → π ∈ ℝ*)
19131, 72, 33, 77, 73lttrd 10198 . . . . . . . . . . 11 (𝑥 ∈ (-π(,)0) → 𝑥 < π)
192189, 190, 31, 63, 191eliood 39720 . . . . . . . . . 10 (𝑥 ∈ (-π(,)0) → 𝑥 ∈ (-π(,)π))
193192, 29sylan2 491 . . . . . . . . 9 ((𝜑𝑥 ∈ (-π(,)0)) → (sin‘(𝑁 · 𝑥)) ∈ ℂ)
194193mulm1d 10482 . . . . . . . 8 ((𝜑𝑥 ∈ (-π(,)0)) → (-1 · (sin‘(𝑁 · 𝑥))) = -(sin‘(𝑁 · 𝑥)))
195188, 194eqtrd 2656 . . . . . . 7 ((𝜑𝑥 ∈ (-π(,)0)) → ((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) = -(sin‘(𝑁 · 𝑥)))
196195itgeq2dv 23548 . . . . . 6 (𝜑 → ∫(-π(,)0)((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥 = ∫(-π(,)0)-(sin‘(𝑁 · 𝑥)) d𝑥)
197101, 127itgneg 23570 . . . . . 6 (𝜑 → -∫(-π(,)0)(sin‘(𝑁 · 𝑥)) d𝑥 = ∫(-π(,)0)-(sin‘(𝑁 · 𝑥)) d𝑥)
19824nnne0d 11065 . . . . . . . . . 10 (𝜑𝑁 ≠ 0)
1997a1i 11 . . . . . . . . . 10 (𝜑 → -π ≤ 0)
20025, 198, 3, 113, 199itgsincmulx 40190 . . . . . . . . 9 (𝜑 → ∫(-π(,)0)(sin‘(𝑁 · 𝑥)) d𝑥 = (((cos‘(𝑁 · -π)) − (cos‘(𝑁 · 0))) / 𝑁))
20124nnzd 11481 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℤ)
202 cosknegpi 40080 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → (cos‘(𝑁 · -π)) = if(2 ∥ 𝑁, 1, -1))
203201, 202syl 17 . . . . . . . . . . . 12 (𝜑 → (cos‘(𝑁 · -π)) = if(2 ∥ 𝑁, 1, -1))
20425mul01d 10235 . . . . . . . . . . . . . 14 (𝜑 → (𝑁 · 0) = 0)
205204fveq2d 6195 . . . . . . . . . . . . 13 (𝜑 → (cos‘(𝑁 · 0)) = (cos‘0))
206 cos0 14880 . . . . . . . . . . . . 13 (cos‘0) = 1
207205, 206syl6eq 2672 . . . . . . . . . . . 12 (𝜑 → (cos‘(𝑁 · 0)) = 1)
208203, 207oveq12d 6668 . . . . . . . . . . 11 (𝜑 → ((cos‘(𝑁 · -π)) − (cos‘(𝑁 · 0))) = (if(2 ∥ 𝑁, 1, -1) − 1))
209 1m1e0 11089 . . . . . . . . . . . . 13 (1 − 1) = 0
210 iftrue 4092 . . . . . . . . . . . . . 14 (2 ∥ 𝑁 → if(2 ∥ 𝑁, 1, -1) = 1)
211210oveq1d 6665 . . . . . . . . . . . . 13 (2 ∥ 𝑁 → (if(2 ∥ 𝑁, 1, -1) − 1) = (1 − 1))
212 iftrue 4092 . . . . . . . . . . . . 13 (2 ∥ 𝑁 → if(2 ∥ 𝑁, 0, -2) = 0)
213209, 211, 2123eqtr4a 2682 . . . . . . . . . . . 12 (2 ∥ 𝑁 → (if(2 ∥ 𝑁, 1, -1) − 1) = if(2 ∥ 𝑁, 0, -2))
214 iffalse 4095 . . . . . . . . . . . . . 14 (¬ 2 ∥ 𝑁 → if(2 ∥ 𝑁, 1, -1) = -1)
215214oveq1d 6665 . . . . . . . . . . . . 13 (¬ 2 ∥ 𝑁 → (if(2 ∥ 𝑁, 1, -1) − 1) = (-1 − 1))
216 ax-1cn 9994 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
217 negdi2 10339 . . . . . . . . . . . . . . . 16 ((1 ∈ ℂ ∧ 1 ∈ ℂ) → -(1 + 1) = (-1 − 1))
218216, 216, 217mp2an 708 . . . . . . . . . . . . . . 15 -(1 + 1) = (-1 − 1)
219218eqcomi 2631 . . . . . . . . . . . . . 14 (-1 − 1) = -(1 + 1)
220219a1i 11 . . . . . . . . . . . . 13 (¬ 2 ∥ 𝑁 → (-1 − 1) = -(1 + 1))
221 iffalse 4095 . . . . . . . . . . . . . 14 (¬ 2 ∥ 𝑁 → if(2 ∥ 𝑁, 0, -2) = -2)
222 1p1e2 11134 . . . . . . . . . . . . . . 15 (1 + 1) = 2
223222negeqi 10274 . . . . . . . . . . . . . 14 -(1 + 1) = -2
224221, 223syl6reqr 2675 . . . . . . . . . . . . 13 (¬ 2 ∥ 𝑁 → -(1 + 1) = if(2 ∥ 𝑁, 0, -2))
225215, 220, 2243eqtrd 2660 . . . . . . . . . . . 12 (¬ 2 ∥ 𝑁 → (if(2 ∥ 𝑁, 1, -1) − 1) = if(2 ∥ 𝑁, 0, -2))
226213, 225pm2.61i 176 . . . . . . . . . . 11 (if(2 ∥ 𝑁, 1, -1) − 1) = if(2 ∥ 𝑁, 0, -2)
227208, 226syl6eq 2672 . . . . . . . . . 10 (𝜑 → ((cos‘(𝑁 · -π)) − (cos‘(𝑁 · 0))) = if(2 ∥ 𝑁, 0, -2))
228227oveq1d 6665 . . . . . . . . 9 (𝜑 → (((cos‘(𝑁 · -π)) − (cos‘(𝑁 · 0))) / 𝑁) = (if(2 ∥ 𝑁, 0, -2) / 𝑁))
229200, 228eqtrd 2656 . . . . . . . 8 (𝜑 → ∫(-π(,)0)(sin‘(𝑁 · 𝑥)) d𝑥 = (if(2 ∥ 𝑁, 0, -2) / 𝑁))
230229negeqd 10275 . . . . . . 7 (𝜑 → -∫(-π(,)0)(sin‘(𝑁 · 𝑥)) d𝑥 = -(if(2 ∥ 𝑁, 0, -2) / 𝑁))
231 0cn 10032 . . . . . . . . . 10 0 ∈ ℂ
232 2cn 11091 . . . . . . . . . . 11 2 ∈ ℂ
233232negcli 10349 . . . . . . . . . 10 -2 ∈ ℂ
234231, 233keepel 4155 . . . . . . . . 9 if(2 ∥ 𝑁, 0, -2) ∈ ℂ
235234a1i 11 . . . . . . . 8 (𝜑 → if(2 ∥ 𝑁, 0, -2) ∈ ℂ)
236235, 25, 198divnegd 10814 . . . . . . 7 (𝜑 → -(if(2 ∥ 𝑁, 0, -2) / 𝑁) = (-if(2 ∥ 𝑁, 0, -2) / 𝑁))
237 neg0 10327 . . . . . . . . . . 11 -0 = 0
238212negeqd 10275 . . . . . . . . . . 11 (2 ∥ 𝑁 → -if(2 ∥ 𝑁, 0, -2) = -0)
239 iftrue 4092 . . . . . . . . . . 11 (2 ∥ 𝑁 → if(2 ∥ 𝑁, 0, 2) = 0)
240237, 238, 2393eqtr4a 2682 . . . . . . . . . 10 (2 ∥ 𝑁 → -if(2 ∥ 𝑁, 0, -2) = if(2 ∥ 𝑁, 0, 2))
241232negnegi 10351 . . . . . . . . . . 11 --2 = 2
242221negeqd 10275 . . . . . . . . . . 11 (¬ 2 ∥ 𝑁 → -if(2 ∥ 𝑁, 0, -2) = --2)
243 iffalse 4095 . . . . . . . . . . 11 (¬ 2 ∥ 𝑁 → if(2 ∥ 𝑁, 0, 2) = 2)
244241, 242, 2433eqtr4a 2682 . . . . . . . . . 10 (¬ 2 ∥ 𝑁 → -if(2 ∥ 𝑁, 0, -2) = if(2 ∥ 𝑁, 0, 2))
245240, 244pm2.61i 176 . . . . . . . . 9 -if(2 ∥ 𝑁, 0, -2) = if(2 ∥ 𝑁, 0, 2)
246245oveq1i 6660 . . . . . . . 8 (-if(2 ∥ 𝑁, 0, -2) / 𝑁) = (if(2 ∥ 𝑁, 0, 2) / 𝑁)
247246a1i 11 . . . . . . 7 (𝜑 → (-if(2 ∥ 𝑁, 0, -2) / 𝑁) = (if(2 ∥ 𝑁, 0, 2) / 𝑁))
248230, 236, 2473eqtrd 2660 . . . . . 6 (𝜑 → -∫(-π(,)0)(sin‘(𝑁 · 𝑥)) d𝑥 = (if(2 ∥ 𝑁, 0, 2) / 𝑁))
249196, 197, 2483eqtr2d 2662 . . . . 5 (𝜑 → ∫(-π(,)0)((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥 = (if(2 ∥ 𝑁, 0, 2) / 𝑁))
250133, 17, 19sylancl 694 . . . . . . . . . . 11 (𝑥 ∈ (0(,)π) → (𝐹𝑥) = if((𝑥 mod 𝑇) < π, 1, -1))
251250, 156eqtrd 2656 . . . . . . . . . 10 (𝑥 ∈ (0(,)π) → (𝐹𝑥) = 1)
252251oveq1d 6665 . . . . . . . . 9 (𝑥 ∈ (0(,)π) → ((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) = (1 · (sin‘(𝑁 · 𝑥))))
253252adantl 482 . . . . . . . 8 ((𝜑𝑥 ∈ (0(,)π)) → ((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) = (1 · (sin‘(𝑁 · 𝑥))))
254253, 161eqtrd 2656 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)π)) → ((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) = (sin‘(𝑁 · 𝑥)))
255254itgeq2dv 23548 . . . . . 6 (𝜑 → ∫(0(,)π)((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥 = ∫(0(,)π)(sin‘(𝑁 · 𝑥)) d𝑥)
2569a1i 11 . . . . . . 7 (𝜑 → 0 ≤ π)
25725, 198, 113, 4, 256itgsincmulx 40190 . . . . . 6 (𝜑 → ∫(0(,)π)(sin‘(𝑁 · 𝑥)) d𝑥 = (((cos‘(𝑁 · 0)) − (cos‘(𝑁 · π))) / 𝑁))
258 coskpi2 40077 . . . . . . . . . 10 (𝑁 ∈ ℤ → (cos‘(𝑁 · π)) = if(2 ∥ 𝑁, 1, -1))
259201, 258syl 17 . . . . . . . . 9 (𝜑 → (cos‘(𝑁 · π)) = if(2 ∥ 𝑁, 1, -1))
260207, 259oveq12d 6668 . . . . . . . 8 (𝜑 → ((cos‘(𝑁 · 0)) − (cos‘(𝑁 · π))) = (1 − if(2 ∥ 𝑁, 1, -1)))
261210oveq2d 6666 . . . . . . . . . 10 (2 ∥ 𝑁 → (1 − if(2 ∥ 𝑁, 1, -1)) = (1 − 1))
262209, 261, 2393eqtr4a 2682 . . . . . . . . 9 (2 ∥ 𝑁 → (1 − if(2 ∥ 𝑁, 1, -1)) = if(2 ∥ 𝑁, 0, 2))
263214oveq2d 6666 . . . . . . . . . 10 (¬ 2 ∥ 𝑁 → (1 − if(2 ∥ 𝑁, 1, -1)) = (1 − -1))
264216, 216subnegi 10360 . . . . . . . . . . 11 (1 − -1) = (1 + 1)
265264a1i 11 . . . . . . . . . 10 (¬ 2 ∥ 𝑁 → (1 − -1) = (1 + 1))
266243, 222syl6reqr 2675 . . . . . . . . . 10 (¬ 2 ∥ 𝑁 → (1 + 1) = if(2 ∥ 𝑁, 0, 2))
267263, 265, 2663eqtrd 2660 . . . . . . . . 9 (¬ 2 ∥ 𝑁 → (1 − if(2 ∥ 𝑁, 1, -1)) = if(2 ∥ 𝑁, 0, 2))
268262, 267pm2.61i 176 . . . . . . . 8 (1 − if(2 ∥ 𝑁, 1, -1)) = if(2 ∥ 𝑁, 0, 2)
269260, 268syl6eq 2672 . . . . . . 7 (𝜑 → ((cos‘(𝑁 · 0)) − (cos‘(𝑁 · π))) = if(2 ∥ 𝑁, 0, 2))
270269oveq1d 6665 . . . . . 6 (𝜑 → (((cos‘(𝑁 · 0)) − (cos‘(𝑁 · π))) / 𝑁) = (if(2 ∥ 𝑁, 0, 2) / 𝑁))
271255, 257, 2703eqtrd 2660 . . . . 5 (𝜑 → ∫(0(,)π)((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥 = (if(2 ∥ 𝑁, 0, 2) / 𝑁))
272249, 271oveq12d 6668 . . . 4 (𝜑 → (∫(-π(,)0)((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥 + ∫(0(,)π)((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥) = ((if(2 ∥ 𝑁, 0, 2) / 𝑁) + (if(2 ∥ 𝑁, 0, 2) / 𝑁)))
273231, 232keepel 4155 . . . . . 6 if(2 ∥ 𝑁, 0, 2) ∈ ℂ
274273a1i 11 . . . . 5 (𝜑 → if(2 ∥ 𝑁, 0, 2) ∈ ℂ)
275274, 274, 25, 198divdird 10839 . . . 4 (𝜑 → ((if(2 ∥ 𝑁, 0, 2) + if(2 ∥ 𝑁, 0, 2)) / 𝑁) = ((if(2 ∥ 𝑁, 0, 2) / 𝑁) + (if(2 ∥ 𝑁, 0, 2) / 𝑁)))
276239, 239oveq12d 6668 . . . . . . . . 9 (2 ∥ 𝑁 → (if(2 ∥ 𝑁, 0, 2) + if(2 ∥ 𝑁, 0, 2)) = (0 + 0))
277 00id 10211 . . . . . . . . 9 (0 + 0) = 0
278276, 277syl6eq 2672 . . . . . . . 8 (2 ∥ 𝑁 → (if(2 ∥ 𝑁, 0, 2) + if(2 ∥ 𝑁, 0, 2)) = 0)
279278oveq1d 6665 . . . . . . 7 (2 ∥ 𝑁 → ((if(2 ∥ 𝑁, 0, 2) + if(2 ∥ 𝑁, 0, 2)) / 𝑁) = (0 / 𝑁))
280279adantl 482 . . . . . 6 ((𝜑 ∧ 2 ∥ 𝑁) → ((if(2 ∥ 𝑁, 0, 2) + if(2 ∥ 𝑁, 0, 2)) / 𝑁) = (0 / 𝑁))
28125, 198div0d 10800 . . . . . . 7 (𝜑 → (0 / 𝑁) = 0)
282281adantr 481 . . . . . 6 ((𝜑 ∧ 2 ∥ 𝑁) → (0 / 𝑁) = 0)
283 iftrue 4092 . . . . . . . 8 (2 ∥ 𝑁 → if(2 ∥ 𝑁, 0, (4 / 𝑁)) = 0)
284283eqcomd 2628 . . . . . . 7 (2 ∥ 𝑁 → 0 = if(2 ∥ 𝑁, 0, (4 / 𝑁)))
285284adantl 482 . . . . . 6 ((𝜑 ∧ 2 ∥ 𝑁) → 0 = if(2 ∥ 𝑁, 0, (4 / 𝑁)))
286280, 282, 2853eqtrd 2660 . . . . 5 ((𝜑 ∧ 2 ∥ 𝑁) → ((if(2 ∥ 𝑁, 0, 2) + if(2 ∥ 𝑁, 0, 2)) / 𝑁) = if(2 ∥ 𝑁, 0, (4 / 𝑁)))
287243, 243oveq12d 6668 . . . . . . . . 9 (¬ 2 ∥ 𝑁 → (if(2 ∥ 𝑁, 0, 2) + if(2 ∥ 𝑁, 0, 2)) = (2 + 2))
288 2p2e4 11144 . . . . . . . . 9 (2 + 2) = 4
289287, 288syl6eq 2672 . . . . . . . 8 (¬ 2 ∥ 𝑁 → (if(2 ∥ 𝑁, 0, 2) + if(2 ∥ 𝑁, 0, 2)) = 4)
290289oveq1d 6665 . . . . . . 7 (¬ 2 ∥ 𝑁 → ((if(2 ∥ 𝑁, 0, 2) + if(2 ∥ 𝑁, 0, 2)) / 𝑁) = (4 / 𝑁))
291 iffalse 4095 . . . . . . 7 (¬ 2 ∥ 𝑁 → if(2 ∥ 𝑁, 0, (4 / 𝑁)) = (4 / 𝑁))
292290, 291eqtr4d 2659 . . . . . 6 (¬ 2 ∥ 𝑁 → ((if(2 ∥ 𝑁, 0, 2) + if(2 ∥ 𝑁, 0, 2)) / 𝑁) = if(2 ∥ 𝑁, 0, (4 / 𝑁)))
293292adantl 482 . . . . 5 ((𝜑 ∧ ¬ 2 ∥ 𝑁) → ((if(2 ∥ 𝑁, 0, 2) + if(2 ∥ 𝑁, 0, 2)) / 𝑁) = if(2 ∥ 𝑁, 0, (4 / 𝑁)))
294286, 293pm2.61dan 832 . . . 4 (𝜑 → ((if(2 ∥ 𝑁, 0, 2) + if(2 ∥ 𝑁, 0, 2)) / 𝑁) = if(2 ∥ 𝑁, 0, (4 / 𝑁)))
295272, 275, 2943eqtr2d 2662 . . 3 (𝜑 → (∫(-π(,)0)((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥 + ∫(0(,)π)((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥) = if(2 ∥ 𝑁, 0, (4 / 𝑁)))
296295oveq1d 6665 . 2 (𝜑 → ((∫(-π(,)0)((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥 + ∫(0(,)π)((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥) / π) = (if(2 ∥ 𝑁, 0, (4 / 𝑁)) / π))
297283oveq1d 6665 . . . . 5 (2 ∥ 𝑁 → (if(2 ∥ 𝑁, 0, (4 / 𝑁)) / π) = (0 / π))
298297adantl 482 . . . 4 ((𝜑 ∧ 2 ∥ 𝑁) → (if(2 ∥ 𝑁, 0, (4 / 𝑁)) / π) = (0 / π))
2995, 8gtneii 10149 . . . . . 6 π ≠ 0
30042, 299div0i 10759 . . . . 5 (0 / π) = 0
301300a1i 11 . . . 4 ((𝜑 ∧ 2 ∥ 𝑁) → (0 / π) = 0)
302 iftrue 4092 . . . . . 6 (2 ∥ 𝑁 → if(2 ∥ 𝑁, 0, (4 / (𝑁 · π))) = 0)
303302eqcomd 2628 . . . . 5 (2 ∥ 𝑁 → 0 = if(2 ∥ 𝑁, 0, (4 / (𝑁 · π))))
304303adantl 482 . . . 4 ((𝜑 ∧ 2 ∥ 𝑁) → 0 = if(2 ∥ 𝑁, 0, (4 / (𝑁 · π))))
305298, 301, 3043eqtrd 2660 . . 3 ((𝜑 ∧ 2 ∥ 𝑁) → (if(2 ∥ 𝑁, 0, (4 / 𝑁)) / π) = if(2 ∥ 𝑁, 0, (4 / (𝑁 · π))))
306291oveq1d 6665 . . . . 5 (¬ 2 ∥ 𝑁 → (if(2 ∥ 𝑁, 0, (4 / 𝑁)) / π) = ((4 / 𝑁) / π))
307306adantl 482 . . . 4 ((𝜑 ∧ ¬ 2 ∥ 𝑁) → (if(2 ∥ 𝑁, 0, (4 / 𝑁)) / π) = ((4 / 𝑁) / π))
308 4cn 11098 . . . . . . 7 4 ∈ ℂ
309308a1i 11 . . . . . 6 (𝜑 → 4 ∈ ℂ)
31042a1i 11 . . . . . 6 (𝜑 → π ∈ ℂ)
311299a1i 11 . . . . . 6 (𝜑 → π ≠ 0)
312309, 25, 310, 198, 311divdiv1d 10832 . . . . 5 (𝜑 → ((4 / 𝑁) / π) = (4 / (𝑁 · π)))
313312adantr 481 . . . 4 ((𝜑 ∧ ¬ 2 ∥ 𝑁) → ((4 / 𝑁) / π) = (4 / (𝑁 · π)))
314 iffalse 4095 . . . . . 6 (¬ 2 ∥ 𝑁 → if(2 ∥ 𝑁, 0, (4 / (𝑁 · π))) = (4 / (𝑁 · π)))
315314eqcomd 2628 . . . . 5 (¬ 2 ∥ 𝑁 → (4 / (𝑁 · π)) = if(2 ∥ 𝑁, 0, (4 / (𝑁 · π))))
316315adantl 482 . . . 4 ((𝜑 ∧ ¬ 2 ∥ 𝑁) → (4 / (𝑁 · π)) = if(2 ∥ 𝑁, 0, (4 / (𝑁 · π))))
317307, 313, 3163eqtrd 2660 . . 3 ((𝜑 ∧ ¬ 2 ∥ 𝑁) → (if(2 ∥ 𝑁, 0, (4 / 𝑁)) / π) = if(2 ∥ 𝑁, 0, (4 / (𝑁 · π))))
318305, 317pm2.61dan 832 . 2 (𝜑 → (if(2 ∥ 𝑁, 0, (4 / 𝑁)) / π) = if(2 ∥ 𝑁, 0, (4 / (𝑁 · π))))
319186, 296, 3183eqtrd 2660 1 (𝜑 → (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥 / π) = if(2 ∥ 𝑁, 0, (4 / (𝑁 · π))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1483  wcel 1990  wne 2794  wss 3574  ifcif 4086   class class class wbr 4653  cmpt 4729  dom cdm 5114  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  *cxr 10073   < clt 10074  cle 10075  cmin 10266  -cneg 10267   / cdiv 10684  cn 11020  2c2 11070  4c4 11072  cz 11377  +crp 11832  (,)cioo 12175  [,]cicc 12178   mod cmo 12668  sincsin 14794  cosccos 14795  πcpi 14797  cdvds 14983  cnccncf 22679  volcvol 23232  𝐿1cibl 23386  citg 23387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-dvds 14984  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-ovol 23233  df-vol 23234  df-mbf 23388  df-itg1 23389  df-itg2 23390  df-ibl 23391  df-itg 23392  df-0p 23437  df-limc 23630  df-dv 23631
This theorem is referenced by:  fouriersw  40448
  Copyright terms: Public domain W3C validator