Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  noetalem2 Structured version   Visualization version   GIF version

Theorem noetalem2 31864
Description: Lemma for noeta 31868. 𝑍 is an upper bound for 𝐴. Part of Theorem 5.1 of [Lipparini] p. 7-8. (Contributed by Scott Fenton, 4-Dec-2021.)
Hypotheses
Ref Expression
noetalem.1 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
noetalem.2 𝑍 = (𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1𝑜}))
Assertion
Ref Expression
noetalem2 (((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑋𝐴) → 𝑋 <s 𝑍)
Distinct variable groups:   𝐴,𝑔,𝑢,𝑣,𝑥,𝑦   𝑢,𝑋,𝑣,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑆(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑋(𝑔)   𝑍(𝑥,𝑦,𝑣,𝑢,𝑔)

Proof of Theorem noetalem2
StepHypRef Expression
1 simpl1 1064 . . . 4 (((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑋𝐴) → 𝐴 No )
2 simpl2 1065 . . . 4 (((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑋𝐴) → 𝐴 ∈ V)
3 simpr 477 . . . 4 (((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑋𝐴) → 𝑋𝐴)
4 noetalem.1 . . . . 5 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
54nosupbnd1 31860 . . . 4 ((𝐴 No 𝐴 ∈ V ∧ 𝑋𝐴) → (𝑋 ↾ dom 𝑆) <s 𝑆)
61, 2, 3, 5syl3anc 1326 . . 3 (((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑋𝐴) → (𝑋 ↾ dom 𝑆) <s 𝑆)
7 noetalem.2 . . . . . 6 𝑍 = (𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1𝑜}))
87reseq1i 5392 . . . . 5 (𝑍 ↾ dom 𝑆) = ((𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1𝑜})) ↾ dom 𝑆)
9 resundir 5411 . . . . . 6 ((𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1𝑜})) ↾ dom 𝑆) = ((𝑆 ↾ dom 𝑆) ∪ (((suc ( bday 𝐵) ∖ dom 𝑆) × {1𝑜}) ↾ dom 𝑆))
10 df-res 5126 . . . . . . . 8 (((suc ( bday 𝐵) ∖ dom 𝑆) × {1𝑜}) ↾ dom 𝑆) = (((suc ( bday 𝐵) ∖ dom 𝑆) × {1𝑜}) ∩ (dom 𝑆 × V))
11 incom 3805 . . . . . . . . . 10 ((suc ( bday 𝐵) ∖ dom 𝑆) ∩ dom 𝑆) = (dom 𝑆 ∩ (suc ( bday 𝐵) ∖ dom 𝑆))
12 disjdif 4040 . . . . . . . . . 10 (dom 𝑆 ∩ (suc ( bday 𝐵) ∖ dom 𝑆)) = ∅
1311, 12eqtri 2644 . . . . . . . . 9 ((suc ( bday 𝐵) ∖ dom 𝑆) ∩ dom 𝑆) = ∅
14 xpdisj1 5555 . . . . . . . . 9 (((suc ( bday 𝐵) ∖ dom 𝑆) ∩ dom 𝑆) = ∅ → (((suc ( bday 𝐵) ∖ dom 𝑆) × {1𝑜}) ∩ (dom 𝑆 × V)) = ∅)
1513, 14ax-mp 5 . . . . . . . 8 (((suc ( bday 𝐵) ∖ dom 𝑆) × {1𝑜}) ∩ (dom 𝑆 × V)) = ∅
1610, 15eqtri 2644 . . . . . . 7 (((suc ( bday 𝐵) ∖ dom 𝑆) × {1𝑜}) ↾ dom 𝑆) = ∅
1716uneq2i 3764 . . . . . 6 ((𝑆 ↾ dom 𝑆) ∪ (((suc ( bday 𝐵) ∖ dom 𝑆) × {1𝑜}) ↾ dom 𝑆)) = ((𝑆 ↾ dom 𝑆) ∪ ∅)
18 un0 3967 . . . . . 6 ((𝑆 ↾ dom 𝑆) ∪ ∅) = (𝑆 ↾ dom 𝑆)
199, 17, 183eqtri 2648 . . . . 5 ((𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1𝑜})) ↾ dom 𝑆) = (𝑆 ↾ dom 𝑆)
208, 19eqtri 2644 . . . 4 (𝑍 ↾ dom 𝑆) = (𝑆 ↾ dom 𝑆)
214nosupno 31849 . . . . . . 7 ((𝐴 No 𝐴 ∈ V) → 𝑆 No )
221, 2, 21syl2anc 693 . . . . . 6 (((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑋𝐴) → 𝑆 No )
23 nofun 31802 . . . . . 6 (𝑆 No → Fun 𝑆)
2422, 23syl 17 . . . . 5 (((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑋𝐴) → Fun 𝑆)
25 funrel 5905 . . . . 5 (Fun 𝑆 → Rel 𝑆)
26 resdm 5441 . . . . 5 (Rel 𝑆 → (𝑆 ↾ dom 𝑆) = 𝑆)
2724, 25, 263syl 18 . . . 4 (((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑋𝐴) → (𝑆 ↾ dom 𝑆) = 𝑆)
2820, 27syl5eq 2668 . . 3 (((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑋𝐴) → (𝑍 ↾ dom 𝑆) = 𝑆)
296, 28breqtrrd 4681 . 2 (((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑋𝐴) → (𝑋 ↾ dom 𝑆) <s (𝑍 ↾ dom 𝑆))
30 simp1 1061 . . . 4 ((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝐴 No )
3130sselda 3603 . . 3 (((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑋𝐴) → 𝑋 No )
324, 7noetalem1 31863 . . . 4 ((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝑍 No )
3332adantr 481 . . 3 (((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑋𝐴) → 𝑍 No )
34 nodmon 31803 . . . 4 (𝑆 No → dom 𝑆 ∈ On)
3522, 34syl 17 . . 3 (((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑋𝐴) → dom 𝑆 ∈ On)
36 sltres 31815 . . 3 ((𝑋 No 𝑍 No ∧ dom 𝑆 ∈ On) → ((𝑋 ↾ dom 𝑆) <s (𝑍 ↾ dom 𝑆) → 𝑋 <s 𝑍))
3731, 33, 35, 36syl3anc 1326 . 2 (((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑋𝐴) → ((𝑋 ↾ dom 𝑆) <s (𝑍 ↾ dom 𝑆) → 𝑋 <s 𝑍))
3829, 37mpd 15 1 (((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑋𝐴) → 𝑋 <s 𝑍)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  {cab 2608  wral 2912  wrex 2913  Vcvv 3200  cdif 3571  cun 3572  cin 3573  wss 3574  c0 3915  ifcif 4086  {csn 4177  cop 4183   cuni 4436   class class class wbr 4653  cmpt 4729   × cxp 5112  dom cdm 5114  cres 5116  cima 5117  Rel wrel 5119  Oncon0 5723  suc csuc 5725  cio 5849  Fun wfun 5882  cfv 5888  crio 6610  1𝑜c1o 7553  2𝑜c2o 7554   No csur 31793   <s cslt 31794   bday cbday 31795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-1o 7560  df-2o 7561  df-no 31796  df-slt 31797  df-bday 31798
This theorem is referenced by:  noetalem5  31867
  Copyright terms: Public domain W3C validator