Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  noetalem2 Structured version   Visualization version   Unicode version

Theorem noetalem2 31864
Description: Lemma for noeta 31868. 
Z is an upper bound for 
A. Part of Theorem 5.1 of [Lipparini] p. 7-8. (Contributed by Scott Fenton, 4-Dec-2021.)
Hypotheses
Ref Expression
noetalem.1  |-  S  =  if ( E. x  e.  A  A. y  e.  A  -.  x <s y ,  ( ( iota_ x  e.  A  A. y  e.  A  -.  x <s y )  u.  { <. dom  ( iota_ x  e.  A  A. y  e.  A  -.  x <s y ) ,  2o >. } ) ,  ( g  e.  { y  |  E. u  e.  A  ( y  e.  dom  u  /\  A. v  e.  A  ( -.  v
<s u  -> 
( u  |`  suc  y
)  =  ( v  |`  suc  y ) ) ) }  |->  ( iota
x E. u  e.  A  ( g  e. 
dom  u  /\  A. v  e.  A  ( -.  v <s u  ->  ( u  |`  suc  g )  =  ( v  |`  suc  g ) )  /\  ( u `
 g )  =  x ) ) ) )
noetalem.2  |-  Z  =  ( S  u.  (
( suc  U. ( bday " B )  \  dom  S )  X.  { 1o } ) )
Assertion
Ref Expression
noetalem2  |-  ( ( ( A  C_  No  /\  A  e.  _V  /\  B  e.  _V )  /\  X  e.  A
)  ->  X <s Z )
Distinct variable groups:    A, g, u, v, x, y    u, X, v, x, y
Allowed substitution hints:    B( x, y, v, u, g)    S( x, y, v, u, g)    X( g)    Z( x, y, v, u, g)

Proof of Theorem noetalem2
StepHypRef Expression
1 simpl1 1064 . . . 4  |-  ( ( ( A  C_  No  /\  A  e.  _V  /\  B  e.  _V )  /\  X  e.  A
)  ->  A  C_  No )
2 simpl2 1065 . . . 4  |-  ( ( ( A  C_  No  /\  A  e.  _V  /\  B  e.  _V )  /\  X  e.  A
)  ->  A  e.  _V )
3 simpr 477 . . . 4  |-  ( ( ( A  C_  No  /\  A  e.  _V  /\  B  e.  _V )  /\  X  e.  A
)  ->  X  e.  A )
4 noetalem.1 . . . . 5  |-  S  =  if ( E. x  e.  A  A. y  e.  A  -.  x <s y ,  ( ( iota_ x  e.  A  A. y  e.  A  -.  x <s y )  u.  { <. dom  ( iota_ x  e.  A  A. y  e.  A  -.  x <s y ) ,  2o >. } ) ,  ( g  e.  { y  |  E. u  e.  A  ( y  e.  dom  u  /\  A. v  e.  A  ( -.  v
<s u  -> 
( u  |`  suc  y
)  =  ( v  |`  suc  y ) ) ) }  |->  ( iota
x E. u  e.  A  ( g  e. 
dom  u  /\  A. v  e.  A  ( -.  v <s u  ->  ( u  |`  suc  g )  =  ( v  |`  suc  g ) )  /\  ( u `
 g )  =  x ) ) ) )
54nosupbnd1 31860 . . . 4  |-  ( ( A  C_  No  /\  A  e.  _V  /\  X  e.  A )  ->  ( X  |`  dom  S ) <s S )
61, 2, 3, 5syl3anc 1326 . . 3  |-  ( ( ( A  C_  No  /\  A  e.  _V  /\  B  e.  _V )  /\  X  e.  A
)  ->  ( X  |` 
dom  S ) <s S )
7 noetalem.2 . . . . . 6  |-  Z  =  ( S  u.  (
( suc  U. ( bday " B )  \  dom  S )  X.  { 1o } ) )
87reseq1i 5392 . . . . 5  |-  ( Z  |`  dom  S )  =  ( ( S  u.  ( ( suc  U. ( bday " B ) 
\  dom  S )  X.  { 1o } ) )  |`  dom  S )
9 resundir 5411 . . . . . 6  |-  ( ( S  u.  ( ( suc  U. ( bday " B )  \  dom  S )  X.  { 1o } ) )  |`  dom  S )  =  ( ( S  |`  dom  S
)  u.  ( ( ( suc  U. ( bday " B )  \  dom  S )  X.  { 1o } )  |`  dom  S
) )
10 df-res 5126 . . . . . . . 8  |-  ( ( ( suc  U. ( bday " B )  \  dom  S )  X.  { 1o } )  |`  dom  S
)  =  ( ( ( suc  U. ( bday " B )  \  dom  S )  X.  { 1o } )  i^i  ( dom  S  X.  _V )
)
11 incom 3805 . . . . . . . . . 10  |-  ( ( suc  U. ( bday " B )  \  dom  S )  i^i  dom  S
)  =  ( dom 
S  i^i  ( suc  U. ( bday " B
)  \  dom  S ) )
12 disjdif 4040 . . . . . . . . . 10  |-  ( dom 
S  i^i  ( suc  U. ( bday " B
)  \  dom  S ) )  =  (/)
1311, 12eqtri 2644 . . . . . . . . 9  |-  ( ( suc  U. ( bday " B )  \  dom  S )  i^i  dom  S
)  =  (/)
14 xpdisj1 5555 . . . . . . . . 9  |-  ( ( ( suc  U. ( bday " B )  \  dom  S )  i^i  dom  S )  =  (/)  ->  (
( ( suc  U. ( bday " B ) 
\  dom  S )  X.  { 1o } )  i^i  ( dom  S  X.  _V ) )  =  (/) )
1513, 14ax-mp 5 . . . . . . . 8  |-  ( ( ( suc  U. ( bday " B )  \  dom  S )  X.  { 1o } )  i^i  ( dom  S  X.  _V )
)  =  (/)
1610, 15eqtri 2644 . . . . . . 7  |-  ( ( ( suc  U. ( bday " B )  \  dom  S )  X.  { 1o } )  |`  dom  S
)  =  (/)
1716uneq2i 3764 . . . . . 6  |-  ( ( S  |`  dom  S )  u.  ( ( ( suc  U. ( bday " B )  \  dom  S )  X.  { 1o } )  |`  dom  S
) )  =  ( ( S  |`  dom  S
)  u.  (/) )
18 un0 3967 . . . . . 6  |-  ( ( S  |`  dom  S )  u.  (/) )  =  ( S  |`  dom  S )
199, 17, 183eqtri 2648 . . . . 5  |-  ( ( S  u.  ( ( suc  U. ( bday " B )  \  dom  S )  X.  { 1o } ) )  |`  dom  S )  =  ( S  |`  dom  S )
208, 19eqtri 2644 . . . 4  |-  ( Z  |`  dom  S )  =  ( S  |`  dom  S
)
214nosupno 31849 . . . . . . 7  |-  ( ( A  C_  No  /\  A  e.  _V )  ->  S  e.  No )
221, 2, 21syl2anc 693 . . . . . 6  |-  ( ( ( A  C_  No  /\  A  e.  _V  /\  B  e.  _V )  /\  X  e.  A
)  ->  S  e.  No )
23 nofun 31802 . . . . . 6  |-  ( S  e.  No  ->  Fun  S )
2422, 23syl 17 . . . . 5  |-  ( ( ( A  C_  No  /\  A  e.  _V  /\  B  e.  _V )  /\  X  e.  A
)  ->  Fun  S )
25 funrel 5905 . . . . 5  |-  ( Fun 
S  ->  Rel  S )
26 resdm 5441 . . . . 5  |-  ( Rel 
S  ->  ( S  |` 
dom  S )  =  S )
2724, 25, 263syl 18 . . . 4  |-  ( ( ( A  C_  No  /\  A  e.  _V  /\  B  e.  _V )  /\  X  e.  A
)  ->  ( S  |` 
dom  S )  =  S )
2820, 27syl5eq 2668 . . 3  |-  ( ( ( A  C_  No  /\  A  e.  _V  /\  B  e.  _V )  /\  X  e.  A
)  ->  ( Z  |` 
dom  S )  =  S )
296, 28breqtrrd 4681 . 2  |-  ( ( ( A  C_  No  /\  A  e.  _V  /\  B  e.  _V )  /\  X  e.  A
)  ->  ( X  |` 
dom  S ) <s ( Z  |`  dom  S ) )
30 simp1 1061 . . . 4  |-  ( ( A  C_  No  /\  A  e.  _V  /\  B  e. 
_V )  ->  A  C_  No )
3130sselda 3603 . . 3  |-  ( ( ( A  C_  No  /\  A  e.  _V  /\  B  e.  _V )  /\  X  e.  A
)  ->  X  e.  No )
324, 7noetalem1 31863 . . . 4  |-  ( ( A  C_  No  /\  A  e.  _V  /\  B  e. 
_V )  ->  Z  e.  No )
3332adantr 481 . . 3  |-  ( ( ( A  C_  No  /\  A  e.  _V  /\  B  e.  _V )  /\  X  e.  A
)  ->  Z  e.  No )
34 nodmon 31803 . . . 4  |-  ( S  e.  No  ->  dom  S  e.  On )
3522, 34syl 17 . . 3  |-  ( ( ( A  C_  No  /\  A  e.  _V  /\  B  e.  _V )  /\  X  e.  A
)  ->  dom  S  e.  On )
36 sltres 31815 . . 3  |-  ( ( X  e.  No  /\  Z  e.  No  /\  dom  S  e.  On )  -> 
( ( X  |`  dom  S ) <s
( Z  |`  dom  S
)  ->  X <s Z ) )
3731, 33, 35, 36syl3anc 1326 . 2  |-  ( ( ( A  C_  No  /\  A  e.  _V  /\  B  e.  _V )  /\  X  e.  A
)  ->  ( ( X  |`  dom  S ) <s ( Z  |`  dom  S )  ->  X <s Z ) )
3829, 37mpd 15 1  |-  ( ( ( A  C_  No  /\  A  e.  _V  /\  B  e.  _V )  /\  X  e.  A
)  ->  X <s Z )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   {cab 2608   A.wral 2912   E.wrex 2913   _Vcvv 3200    \ cdif 3571    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   ifcif 4086   {csn 4177   <.cop 4183   U.cuni 4436   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   dom cdm 5114    |` cres 5116   "cima 5117   Rel wrel 5119   Oncon0 5723   suc csuc 5725   iotacio 5849   Fun wfun 5882   ` cfv 5888   iota_crio 6610   1oc1o 7553   2oc2o 7554   Nocsur 31793   <scslt 31794   bdaycbday 31795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-1o 7560  df-2o 7561  df-no 31796  df-slt 31797  df-bday 31798
This theorem is referenced by:  noetalem5  31867
  Copyright terms: Public domain W3C validator