MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oeoalem Structured version   Visualization version   GIF version

Theorem oeoalem 7676
Description: Lemma for oeoa 7677. (Contributed by Eric Schmidt, 26-May-2009.)
Hypotheses
Ref Expression
oeoalem.1 𝐴 ∈ On
oeoalem.2 ∅ ∈ 𝐴
oeoalem.3 𝐵 ∈ On
Assertion
Ref Expression
oeoalem (𝐶 ∈ On → (𝐴𝑜 (𝐵 +𝑜 𝐶)) = ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝐶)))

Proof of Theorem oeoalem
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6658 . . . 4 (𝑥 = ∅ → (𝐵 +𝑜 𝑥) = (𝐵 +𝑜 ∅))
21oveq2d 6666 . . 3 (𝑥 = ∅ → (𝐴𝑜 (𝐵 +𝑜 𝑥)) = (𝐴𝑜 (𝐵 +𝑜 ∅)))
3 oveq2 6658 . . . 4 (𝑥 = ∅ → (𝐴𝑜 𝑥) = (𝐴𝑜 ∅))
43oveq2d 6666 . . 3 (𝑥 = ∅ → ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝑥)) = ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 ∅)))
52, 4eqeq12d 2637 . 2 (𝑥 = ∅ → ((𝐴𝑜 (𝐵 +𝑜 𝑥)) = ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝑥)) ↔ (𝐴𝑜 (𝐵 +𝑜 ∅)) = ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 ∅))))
6 oveq2 6658 . . . 4 (𝑥 = 𝑦 → (𝐵 +𝑜 𝑥) = (𝐵 +𝑜 𝑦))
76oveq2d 6666 . . 3 (𝑥 = 𝑦 → (𝐴𝑜 (𝐵 +𝑜 𝑥)) = (𝐴𝑜 (𝐵 +𝑜 𝑦)))
8 oveq2 6658 . . . 4 (𝑥 = 𝑦 → (𝐴𝑜 𝑥) = (𝐴𝑜 𝑦))
98oveq2d 6666 . . 3 (𝑥 = 𝑦 → ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝑥)) = ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝑦)))
107, 9eqeq12d 2637 . 2 (𝑥 = 𝑦 → ((𝐴𝑜 (𝐵 +𝑜 𝑥)) = ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝑥)) ↔ (𝐴𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝑦))))
11 oveq2 6658 . . . 4 (𝑥 = suc 𝑦 → (𝐵 +𝑜 𝑥) = (𝐵 +𝑜 suc 𝑦))
1211oveq2d 6666 . . 3 (𝑥 = suc 𝑦 → (𝐴𝑜 (𝐵 +𝑜 𝑥)) = (𝐴𝑜 (𝐵 +𝑜 suc 𝑦)))
13 oveq2 6658 . . . 4 (𝑥 = suc 𝑦 → (𝐴𝑜 𝑥) = (𝐴𝑜 suc 𝑦))
1413oveq2d 6666 . . 3 (𝑥 = suc 𝑦 → ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝑥)) = ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 suc 𝑦)))
1512, 14eqeq12d 2637 . 2 (𝑥 = suc 𝑦 → ((𝐴𝑜 (𝐵 +𝑜 𝑥)) = ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝑥)) ↔ (𝐴𝑜 (𝐵 +𝑜 suc 𝑦)) = ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 suc 𝑦))))
16 oveq2 6658 . . . 4 (𝑥 = 𝐶 → (𝐵 +𝑜 𝑥) = (𝐵 +𝑜 𝐶))
1716oveq2d 6666 . . 3 (𝑥 = 𝐶 → (𝐴𝑜 (𝐵 +𝑜 𝑥)) = (𝐴𝑜 (𝐵 +𝑜 𝐶)))
18 oveq2 6658 . . . 4 (𝑥 = 𝐶 → (𝐴𝑜 𝑥) = (𝐴𝑜 𝐶))
1918oveq2d 6666 . . 3 (𝑥 = 𝐶 → ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝑥)) = ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝐶)))
2017, 19eqeq12d 2637 . 2 (𝑥 = 𝐶 → ((𝐴𝑜 (𝐵 +𝑜 𝑥)) = ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝑥)) ↔ (𝐴𝑜 (𝐵 +𝑜 𝐶)) = ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝐶))))
21 oeoalem.1 . . . . 5 𝐴 ∈ On
22 oeoalem.3 . . . . 5 𝐵 ∈ On
23 oecl 7617 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝑜 𝐵) ∈ On)
2421, 22, 23mp2an 708 . . . 4 (𝐴𝑜 𝐵) ∈ On
25 om1 7622 . . . 4 ((𝐴𝑜 𝐵) ∈ On → ((𝐴𝑜 𝐵) ·𝑜 1𝑜) = (𝐴𝑜 𝐵))
2624, 25ax-mp 5 . . 3 ((𝐴𝑜 𝐵) ·𝑜 1𝑜) = (𝐴𝑜 𝐵)
27 oe0 7602 . . . . 5 (𝐴 ∈ On → (𝐴𝑜 ∅) = 1𝑜)
2821, 27ax-mp 5 . . . 4 (𝐴𝑜 ∅) = 1𝑜
2928oveq2i 6661 . . 3 ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 ∅)) = ((𝐴𝑜 𝐵) ·𝑜 1𝑜)
30 oa0 7596 . . . . 5 (𝐵 ∈ On → (𝐵 +𝑜 ∅) = 𝐵)
3122, 30ax-mp 5 . . . 4 (𝐵 +𝑜 ∅) = 𝐵
3231oveq2i 6661 . . 3 (𝐴𝑜 (𝐵 +𝑜 ∅)) = (𝐴𝑜 𝐵)
3326, 29, 323eqtr4ri 2655 . 2 (𝐴𝑜 (𝐵 +𝑜 ∅)) = ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 ∅))
34 oasuc 7604 . . . . . . . 8 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 +𝑜 suc 𝑦) = suc (𝐵 +𝑜 𝑦))
3534oveq2d 6666 . . . . . . 7 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴𝑜 (𝐵 +𝑜 suc 𝑦)) = (𝐴𝑜 suc (𝐵 +𝑜 𝑦)))
36 oacl 7615 . . . . . . . 8 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 +𝑜 𝑦) ∈ On)
37 oesuc 7607 . . . . . . . 8 ((𝐴 ∈ On ∧ (𝐵 +𝑜 𝑦) ∈ On) → (𝐴𝑜 suc (𝐵 +𝑜 𝑦)) = ((𝐴𝑜 (𝐵 +𝑜 𝑦)) ·𝑜 𝐴))
3821, 36, 37sylancr 695 . . . . . . 7 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴𝑜 suc (𝐵 +𝑜 𝑦)) = ((𝐴𝑜 (𝐵 +𝑜 𝑦)) ·𝑜 𝐴))
3935, 38eqtrd 2656 . . . . . 6 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴𝑜 (𝐵 +𝑜 suc 𝑦)) = ((𝐴𝑜 (𝐵 +𝑜 𝑦)) ·𝑜 𝐴))
4022, 39mpan 706 . . . . 5 (𝑦 ∈ On → (𝐴𝑜 (𝐵 +𝑜 suc 𝑦)) = ((𝐴𝑜 (𝐵 +𝑜 𝑦)) ·𝑜 𝐴))
41 oveq1 6657 . . . . 5 ((𝐴𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝑦)) → ((𝐴𝑜 (𝐵 +𝑜 𝑦)) ·𝑜 𝐴) = (((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝑦)) ·𝑜 𝐴))
4240, 41sylan9eq 2676 . . . 4 ((𝑦 ∈ On ∧ (𝐴𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝑦))) → (𝐴𝑜 (𝐵 +𝑜 suc 𝑦)) = (((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝑦)) ·𝑜 𝐴))
43 oecl 7617 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴𝑜 𝑦) ∈ On)
44 omass 7660 . . . . . . . . 9 (((𝐴𝑜 𝐵) ∈ On ∧ (𝐴𝑜 𝑦) ∈ On ∧ 𝐴 ∈ On) → (((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝑦)) ·𝑜 𝐴) = ((𝐴𝑜 𝐵) ·𝑜 ((𝐴𝑜 𝑦) ·𝑜 𝐴)))
4524, 21, 44mp3an13 1415 . . . . . . . 8 ((𝐴𝑜 𝑦) ∈ On → (((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝑦)) ·𝑜 𝐴) = ((𝐴𝑜 𝐵) ·𝑜 ((𝐴𝑜 𝑦) ·𝑜 𝐴)))
4643, 45syl 17 . . . . . . 7 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝑦)) ·𝑜 𝐴) = ((𝐴𝑜 𝐵) ·𝑜 ((𝐴𝑜 𝑦) ·𝑜 𝐴)))
47 oesuc 7607 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴𝑜 suc 𝑦) = ((𝐴𝑜 𝑦) ·𝑜 𝐴))
4847oveq2d 6666 . . . . . . 7 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 suc 𝑦)) = ((𝐴𝑜 𝐵) ·𝑜 ((𝐴𝑜 𝑦) ·𝑜 𝐴)))
4946, 48eqtr4d 2659 . . . . . 6 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝑦)) ·𝑜 𝐴) = ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 suc 𝑦)))
5021, 49mpan 706 . . . . 5 (𝑦 ∈ On → (((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝑦)) ·𝑜 𝐴) = ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 suc 𝑦)))
5150adantr 481 . . . 4 ((𝑦 ∈ On ∧ (𝐴𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝑦))) → (((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝑦)) ·𝑜 𝐴) = ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 suc 𝑦)))
5242, 51eqtrd 2656 . . 3 ((𝑦 ∈ On ∧ (𝐴𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝑦))) → (𝐴𝑜 (𝐵 +𝑜 suc 𝑦)) = ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 suc 𝑦)))
5352ex 450 . 2 (𝑦 ∈ On → ((𝐴𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝑦)) → (𝐴𝑜 (𝐵 +𝑜 suc 𝑦)) = ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 suc 𝑦))))
54 vex 3203 . . . . . . . 8 𝑥 ∈ V
55 oalim 7612 . . . . . . . . 9 ((𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝐵 +𝑜 𝑥) = 𝑦𝑥 (𝐵 +𝑜 𝑦))
5622, 55mpan 706 . . . . . . . 8 ((𝑥 ∈ V ∧ Lim 𝑥) → (𝐵 +𝑜 𝑥) = 𝑦𝑥 (𝐵 +𝑜 𝑦))
5754, 56mpan 706 . . . . . . 7 (Lim 𝑥 → (𝐵 +𝑜 𝑥) = 𝑦𝑥 (𝐵 +𝑜 𝑦))
5857oveq2d 6666 . . . . . 6 (Lim 𝑥 → (𝐴𝑜 (𝐵 +𝑜 𝑥)) = (𝐴𝑜 𝑦𝑥 (𝐵 +𝑜 𝑦)))
5954a1i 11 . . . . . . 7 (Lim 𝑥𝑥 ∈ V)
60 limord 5784 . . . . . . . . . 10 (Lim 𝑥 → Ord 𝑥)
61 ordelon 5747 . . . . . . . . . 10 ((Ord 𝑥𝑦𝑥) → 𝑦 ∈ On)
6260, 61sylan 488 . . . . . . . . 9 ((Lim 𝑥𝑦𝑥) → 𝑦 ∈ On)
6322, 62, 36sylancr 695 . . . . . . . 8 ((Lim 𝑥𝑦𝑥) → (𝐵 +𝑜 𝑦) ∈ On)
6463ralrimiva 2966 . . . . . . 7 (Lim 𝑥 → ∀𝑦𝑥 (𝐵 +𝑜 𝑦) ∈ On)
65 0ellim 5787 . . . . . . . 8 (Lim 𝑥 → ∅ ∈ 𝑥)
66 ne0i 3921 . . . . . . . 8 (∅ ∈ 𝑥𝑥 ≠ ∅)
6765, 66syl 17 . . . . . . 7 (Lim 𝑥𝑥 ≠ ∅)
68 vex 3203 . . . . . . . . 9 𝑤 ∈ V
69 oeoalem.2 . . . . . . . . . . 11 ∅ ∈ 𝐴
70 oelim 7614 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ (𝑤 ∈ V ∧ Lim 𝑤)) ∧ ∅ ∈ 𝐴) → (𝐴𝑜 𝑤) = 𝑧𝑤 (𝐴𝑜 𝑧))
7169, 70mpan2 707 . . . . . . . . . 10 ((𝐴 ∈ On ∧ (𝑤 ∈ V ∧ Lim 𝑤)) → (𝐴𝑜 𝑤) = 𝑧𝑤 (𝐴𝑜 𝑧))
7221, 71mpan 706 . . . . . . . . 9 ((𝑤 ∈ V ∧ Lim 𝑤) → (𝐴𝑜 𝑤) = 𝑧𝑤 (𝐴𝑜 𝑧))
7368, 72mpan 706 . . . . . . . 8 (Lim 𝑤 → (𝐴𝑜 𝑤) = 𝑧𝑤 (𝐴𝑜 𝑧))
74 oewordi 7671 . . . . . . . . . . 11 (((𝑧 ∈ On ∧ 𝑤 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (𝑧𝑤 → (𝐴𝑜 𝑧) ⊆ (𝐴𝑜 𝑤)))
7569, 74mpan2 707 . . . . . . . . . 10 ((𝑧 ∈ On ∧ 𝑤 ∈ On ∧ 𝐴 ∈ On) → (𝑧𝑤 → (𝐴𝑜 𝑧) ⊆ (𝐴𝑜 𝑤)))
7621, 75mp3an3 1413 . . . . . . . . 9 ((𝑧 ∈ On ∧ 𝑤 ∈ On) → (𝑧𝑤 → (𝐴𝑜 𝑧) ⊆ (𝐴𝑜 𝑤)))
77763impia 1261 . . . . . . . 8 ((𝑧 ∈ On ∧ 𝑤 ∈ On ∧ 𝑧𝑤) → (𝐴𝑜 𝑧) ⊆ (𝐴𝑜 𝑤))
7873, 77onoviun 7440 . . . . . . 7 ((𝑥 ∈ V ∧ ∀𝑦𝑥 (𝐵 +𝑜 𝑦) ∈ On ∧ 𝑥 ≠ ∅) → (𝐴𝑜 𝑦𝑥 (𝐵 +𝑜 𝑦)) = 𝑦𝑥 (𝐴𝑜 (𝐵 +𝑜 𝑦)))
7959, 64, 67, 78syl3anc 1326 . . . . . 6 (Lim 𝑥 → (𝐴𝑜 𝑦𝑥 (𝐵 +𝑜 𝑦)) = 𝑦𝑥 (𝐴𝑜 (𝐵 +𝑜 𝑦)))
8058, 79eqtrd 2656 . . . . 5 (Lim 𝑥 → (𝐴𝑜 (𝐵 +𝑜 𝑥)) = 𝑦𝑥 (𝐴𝑜 (𝐵 +𝑜 𝑦)))
81 iuneq2 4537 . . . . 5 (∀𝑦𝑥 (𝐴𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝑦)) → 𝑦𝑥 (𝐴𝑜 (𝐵 +𝑜 𝑦)) = 𝑦𝑥 ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝑦)))
8280, 81sylan9eq 2676 . . . 4 ((Lim 𝑥 ∧ ∀𝑦𝑥 (𝐴𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝑦))) → (𝐴𝑜 (𝐵 +𝑜 𝑥)) = 𝑦𝑥 ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝑦)))
83 oelim 7614 . . . . . . . . . 10 (((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ ∅ ∈ 𝐴) → (𝐴𝑜 𝑥) = 𝑦𝑥 (𝐴𝑜 𝑦))
8469, 83mpan2 707 . . . . . . . . 9 ((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝐴𝑜 𝑥) = 𝑦𝑥 (𝐴𝑜 𝑦))
8521, 84mpan 706 . . . . . . . 8 ((𝑥 ∈ V ∧ Lim 𝑥) → (𝐴𝑜 𝑥) = 𝑦𝑥 (𝐴𝑜 𝑦))
8654, 85mpan 706 . . . . . . 7 (Lim 𝑥 → (𝐴𝑜 𝑥) = 𝑦𝑥 (𝐴𝑜 𝑦))
8786oveq2d 6666 . . . . . 6 (Lim 𝑥 → ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝑥)) = ((𝐴𝑜 𝐵) ·𝑜 𝑦𝑥 (𝐴𝑜 𝑦)))
8821, 62, 43sylancr 695 . . . . . . . 8 ((Lim 𝑥𝑦𝑥) → (𝐴𝑜 𝑦) ∈ On)
8988ralrimiva 2966 . . . . . . 7 (Lim 𝑥 → ∀𝑦𝑥 (𝐴𝑜 𝑦) ∈ On)
90 omlim 7613 . . . . . . . . . 10 (((𝐴𝑜 𝐵) ∈ On ∧ (𝑤 ∈ V ∧ Lim 𝑤)) → ((𝐴𝑜 𝐵) ·𝑜 𝑤) = 𝑧𝑤 ((𝐴𝑜 𝐵) ·𝑜 𝑧))
9124, 90mpan 706 . . . . . . . . 9 ((𝑤 ∈ V ∧ Lim 𝑤) → ((𝐴𝑜 𝐵) ·𝑜 𝑤) = 𝑧𝑤 ((𝐴𝑜 𝐵) ·𝑜 𝑧))
9268, 91mpan 706 . . . . . . . 8 (Lim 𝑤 → ((𝐴𝑜 𝐵) ·𝑜 𝑤) = 𝑧𝑤 ((𝐴𝑜 𝐵) ·𝑜 𝑧))
93 omwordi 7651 . . . . . . . . . 10 ((𝑧 ∈ On ∧ 𝑤 ∈ On ∧ (𝐴𝑜 𝐵) ∈ On) → (𝑧𝑤 → ((𝐴𝑜 𝐵) ·𝑜 𝑧) ⊆ ((𝐴𝑜 𝐵) ·𝑜 𝑤)))
9424, 93mp3an3 1413 . . . . . . . . 9 ((𝑧 ∈ On ∧ 𝑤 ∈ On) → (𝑧𝑤 → ((𝐴𝑜 𝐵) ·𝑜 𝑧) ⊆ ((𝐴𝑜 𝐵) ·𝑜 𝑤)))
95943impia 1261 . . . . . . . 8 ((𝑧 ∈ On ∧ 𝑤 ∈ On ∧ 𝑧𝑤) → ((𝐴𝑜 𝐵) ·𝑜 𝑧) ⊆ ((𝐴𝑜 𝐵) ·𝑜 𝑤))
9692, 95onoviun 7440 . . . . . . 7 ((𝑥 ∈ V ∧ ∀𝑦𝑥 (𝐴𝑜 𝑦) ∈ On ∧ 𝑥 ≠ ∅) → ((𝐴𝑜 𝐵) ·𝑜 𝑦𝑥 (𝐴𝑜 𝑦)) = 𝑦𝑥 ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝑦)))
9759, 89, 67, 96syl3anc 1326 . . . . . 6 (Lim 𝑥 → ((𝐴𝑜 𝐵) ·𝑜 𝑦𝑥 (𝐴𝑜 𝑦)) = 𝑦𝑥 ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝑦)))
9887, 97eqtrd 2656 . . . . 5 (Lim 𝑥 → ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝑥)) = 𝑦𝑥 ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝑦)))
9998adantr 481 . . . 4 ((Lim 𝑥 ∧ ∀𝑦𝑥 (𝐴𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝑦))) → ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝑥)) = 𝑦𝑥 ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝑦)))
10082, 99eqtr4d 2659 . . 3 ((Lim 𝑥 ∧ ∀𝑦𝑥 (𝐴𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝑦))) → (𝐴𝑜 (𝐵 +𝑜 𝑥)) = ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝑥)))
101100ex 450 . 2 (Lim 𝑥 → (∀𝑦𝑥 (𝐴𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝑦)) → (𝐴𝑜 (𝐵 +𝑜 𝑥)) = ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝑥))))
1025, 10, 15, 20, 33, 53, 101tfinds 7059 1 (𝐶 ∈ On → (𝐴𝑜 (𝐵 +𝑜 𝐶)) = ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  Vcvv 3200  wss 3574  c0 3915   ciun 4520  Ord word 5722  Oncon0 5723  Lim wlim 5724  suc csuc 5725  (class class class)co 6650  1𝑜c1o 7553   +𝑜 coa 7557   ·𝑜 comu 7558  𝑜 coe 7559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-oexp 7566
This theorem is referenced by:  oeoa  7677
  Copyright terms: Public domain W3C validator