| Step | Hyp | Ref
| Expression |
| 1 | | oveq2 6658 |
. . . 4
⊢ (𝑥 = ∅ → (𝐵 +𝑜 𝑥) = (𝐵 +𝑜
∅)) |
| 2 | 1 | oveq2d 6666 |
. . 3
⊢ (𝑥 = ∅ → (𝐴 ↑𝑜
(𝐵 +𝑜
𝑥)) = (𝐴 ↑𝑜 (𝐵 +𝑜
∅))) |
| 3 | | oveq2 6658 |
. . . 4
⊢ (𝑥 = ∅ → (𝐴 ↑𝑜
𝑥) = (𝐴 ↑𝑜
∅)) |
| 4 | 3 | oveq2d 6666 |
. . 3
⊢ (𝑥 = ∅ → ((𝐴 ↑𝑜
𝐵)
·𝑜 (𝐴 ↑𝑜 𝑥)) = ((𝐴 ↑𝑜 𝐵) ·𝑜
(𝐴
↑𝑜 ∅))) |
| 5 | 2, 4 | eqeq12d 2637 |
. 2
⊢ (𝑥 = ∅ → ((𝐴 ↑𝑜
(𝐵 +𝑜
𝑥)) = ((𝐴 ↑𝑜 𝐵) ·𝑜
(𝐴
↑𝑜 𝑥)) ↔ (𝐴 ↑𝑜 (𝐵 +𝑜 ∅))
= ((𝐴
↑𝑜 𝐵) ·𝑜 (𝐴 ↑𝑜
∅)))) |
| 6 | | oveq2 6658 |
. . . 4
⊢ (𝑥 = 𝑦 → (𝐵 +𝑜 𝑥) = (𝐵 +𝑜 𝑦)) |
| 7 | 6 | oveq2d 6666 |
. . 3
⊢ (𝑥 = 𝑦 → (𝐴 ↑𝑜 (𝐵 +𝑜 𝑥)) = (𝐴 ↑𝑜 (𝐵 +𝑜 𝑦))) |
| 8 | | oveq2 6658 |
. . . 4
⊢ (𝑥 = 𝑦 → (𝐴 ↑𝑜 𝑥) = (𝐴 ↑𝑜 𝑦)) |
| 9 | 8 | oveq2d 6666 |
. . 3
⊢ (𝑥 = 𝑦 → ((𝐴 ↑𝑜 𝐵) ·𝑜
(𝐴
↑𝑜 𝑥)) = ((𝐴 ↑𝑜 𝐵) ·𝑜
(𝐴
↑𝑜 𝑦))) |
| 10 | 7, 9 | eqeq12d 2637 |
. 2
⊢ (𝑥 = 𝑦 → ((𝐴 ↑𝑜 (𝐵 +𝑜 𝑥)) = ((𝐴 ↑𝑜 𝐵) ·𝑜
(𝐴
↑𝑜 𝑥)) ↔ (𝐴 ↑𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ↑𝑜 𝐵) ·𝑜
(𝐴
↑𝑜 𝑦)))) |
| 11 | | oveq2 6658 |
. . . 4
⊢ (𝑥 = suc 𝑦 → (𝐵 +𝑜 𝑥) = (𝐵 +𝑜 suc 𝑦)) |
| 12 | 11 | oveq2d 6666 |
. . 3
⊢ (𝑥 = suc 𝑦 → (𝐴 ↑𝑜 (𝐵 +𝑜 𝑥)) = (𝐴 ↑𝑜 (𝐵 +𝑜 suc 𝑦))) |
| 13 | | oveq2 6658 |
. . . 4
⊢ (𝑥 = suc 𝑦 → (𝐴 ↑𝑜 𝑥) = (𝐴 ↑𝑜 suc 𝑦)) |
| 14 | 13 | oveq2d 6666 |
. . 3
⊢ (𝑥 = suc 𝑦 → ((𝐴 ↑𝑜 𝐵) ·𝑜
(𝐴
↑𝑜 𝑥)) = ((𝐴 ↑𝑜 𝐵) ·𝑜
(𝐴
↑𝑜 suc 𝑦))) |
| 15 | 12, 14 | eqeq12d 2637 |
. 2
⊢ (𝑥 = suc 𝑦 → ((𝐴 ↑𝑜 (𝐵 +𝑜 𝑥)) = ((𝐴 ↑𝑜 𝐵) ·𝑜
(𝐴
↑𝑜 𝑥)) ↔ (𝐴 ↑𝑜 (𝐵 +𝑜 suc 𝑦)) = ((𝐴 ↑𝑜 𝐵) ·𝑜
(𝐴
↑𝑜 suc 𝑦)))) |
| 16 | | oveq2 6658 |
. . . 4
⊢ (𝑥 = 𝐶 → (𝐵 +𝑜 𝑥) = (𝐵 +𝑜 𝐶)) |
| 17 | 16 | oveq2d 6666 |
. . 3
⊢ (𝑥 = 𝐶 → (𝐴 ↑𝑜 (𝐵 +𝑜 𝑥)) = (𝐴 ↑𝑜 (𝐵 +𝑜 𝐶))) |
| 18 | | oveq2 6658 |
. . . 4
⊢ (𝑥 = 𝐶 → (𝐴 ↑𝑜 𝑥) = (𝐴 ↑𝑜 𝐶)) |
| 19 | 18 | oveq2d 6666 |
. . 3
⊢ (𝑥 = 𝐶 → ((𝐴 ↑𝑜 𝐵) ·𝑜
(𝐴
↑𝑜 𝑥)) = ((𝐴 ↑𝑜 𝐵) ·𝑜
(𝐴
↑𝑜 𝐶))) |
| 20 | 17, 19 | eqeq12d 2637 |
. 2
⊢ (𝑥 = 𝐶 → ((𝐴 ↑𝑜 (𝐵 +𝑜 𝑥)) = ((𝐴 ↑𝑜 𝐵) ·𝑜
(𝐴
↑𝑜 𝑥)) ↔ (𝐴 ↑𝑜 (𝐵 +𝑜 𝐶)) = ((𝐴 ↑𝑜 𝐵) ·𝑜
(𝐴
↑𝑜 𝐶)))) |
| 21 | | oeoalem.1 |
. . . . 5
⊢ 𝐴 ∈ On |
| 22 | | oeoalem.3 |
. . . . 5
⊢ 𝐵 ∈ On |
| 23 | | oecl 7617 |
. . . . 5
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ↑𝑜
𝐵) ∈
On) |
| 24 | 21, 22, 23 | mp2an 708 |
. . . 4
⊢ (𝐴 ↑𝑜
𝐵) ∈
On |
| 25 | | om1 7622 |
. . . 4
⊢ ((𝐴 ↑𝑜
𝐵) ∈ On → ((𝐴 ↑𝑜
𝐵)
·𝑜 1𝑜) = (𝐴 ↑𝑜 𝐵)) |
| 26 | 24, 25 | ax-mp 5 |
. . 3
⊢ ((𝐴 ↑𝑜
𝐵)
·𝑜 1𝑜) = (𝐴 ↑𝑜 𝐵) |
| 27 | | oe0 7602 |
. . . . 5
⊢ (𝐴 ∈ On → (𝐴 ↑𝑜
∅) = 1𝑜) |
| 28 | 21, 27 | ax-mp 5 |
. . . 4
⊢ (𝐴 ↑𝑜
∅) = 1𝑜 |
| 29 | 28 | oveq2i 6661 |
. . 3
⊢ ((𝐴 ↑𝑜
𝐵)
·𝑜 (𝐴 ↑𝑜 ∅)) =
((𝐴
↑𝑜 𝐵) ·𝑜
1𝑜) |
| 30 | | oa0 7596 |
. . . . 5
⊢ (𝐵 ∈ On → (𝐵 +𝑜 ∅)
= 𝐵) |
| 31 | 22, 30 | ax-mp 5 |
. . . 4
⊢ (𝐵 +𝑜 ∅)
= 𝐵 |
| 32 | 31 | oveq2i 6661 |
. . 3
⊢ (𝐴 ↑𝑜
(𝐵 +𝑜
∅)) = (𝐴
↑𝑜 𝐵) |
| 33 | 26, 29, 32 | 3eqtr4ri 2655 |
. 2
⊢ (𝐴 ↑𝑜
(𝐵 +𝑜
∅)) = ((𝐴
↑𝑜 𝐵) ·𝑜 (𝐴 ↑𝑜
∅)) |
| 34 | | oasuc 7604 |
. . . . . . . 8
⊢ ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 +𝑜 suc 𝑦) = suc (𝐵 +𝑜 𝑦)) |
| 35 | 34 | oveq2d 6666 |
. . . . . . 7
⊢ ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ↑𝑜
(𝐵 +𝑜
suc 𝑦)) = (𝐴 ↑𝑜 suc
(𝐵 +𝑜
𝑦))) |
| 36 | | oacl 7615 |
. . . . . . . 8
⊢ ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 +𝑜 𝑦) ∈ On) |
| 37 | | oesuc 7607 |
. . . . . . . 8
⊢ ((𝐴 ∈ On ∧ (𝐵 +𝑜 𝑦) ∈ On) → (𝐴 ↑𝑜 suc
(𝐵 +𝑜
𝑦)) = ((𝐴 ↑𝑜 (𝐵 +𝑜 𝑦)) ·𝑜
𝐴)) |
| 38 | 21, 36, 37 | sylancr 695 |
. . . . . . 7
⊢ ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ↑𝑜 suc
(𝐵 +𝑜
𝑦)) = ((𝐴 ↑𝑜 (𝐵 +𝑜 𝑦)) ·𝑜
𝐴)) |
| 39 | 35, 38 | eqtrd 2656 |
. . . . . 6
⊢ ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ↑𝑜
(𝐵 +𝑜
suc 𝑦)) = ((𝐴 ↑𝑜
(𝐵 +𝑜
𝑦))
·𝑜 𝐴)) |
| 40 | 22, 39 | mpan 706 |
. . . . 5
⊢ (𝑦 ∈ On → (𝐴 ↑𝑜
(𝐵 +𝑜
suc 𝑦)) = ((𝐴 ↑𝑜
(𝐵 +𝑜
𝑦))
·𝑜 𝐴)) |
| 41 | | oveq1 6657 |
. . . . 5
⊢ ((𝐴 ↑𝑜
(𝐵 +𝑜
𝑦)) = ((𝐴 ↑𝑜 𝐵) ·𝑜
(𝐴
↑𝑜 𝑦)) → ((𝐴 ↑𝑜 (𝐵 +𝑜 𝑦)) ·𝑜
𝐴) = (((𝐴 ↑𝑜 𝐵) ·𝑜
(𝐴
↑𝑜 𝑦)) ·𝑜 𝐴)) |
| 42 | 40, 41 | sylan9eq 2676 |
. . . 4
⊢ ((𝑦 ∈ On ∧ (𝐴 ↑𝑜
(𝐵 +𝑜
𝑦)) = ((𝐴 ↑𝑜 𝐵) ·𝑜
(𝐴
↑𝑜 𝑦))) → (𝐴 ↑𝑜 (𝐵 +𝑜 suc 𝑦)) = (((𝐴 ↑𝑜 𝐵) ·𝑜
(𝐴
↑𝑜 𝑦)) ·𝑜 𝐴)) |
| 43 | | oecl 7617 |
. . . . . . . 8
⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ↑𝑜
𝑦) ∈
On) |
| 44 | | omass 7660 |
. . . . . . . . 9
⊢ (((𝐴 ↑𝑜
𝐵) ∈ On ∧ (𝐴 ↑𝑜
𝑦) ∈ On ∧ 𝐴 ∈ On) → (((𝐴 ↑𝑜
𝐵)
·𝑜 (𝐴 ↑𝑜 𝑦)) ·𝑜
𝐴) = ((𝐴 ↑𝑜 𝐵) ·𝑜
((𝐴
↑𝑜 𝑦) ·𝑜 𝐴))) |
| 45 | 24, 21, 44 | mp3an13 1415 |
. . . . . . . 8
⊢ ((𝐴 ↑𝑜
𝑦) ∈ On →
(((𝐴
↑𝑜 𝐵) ·𝑜 (𝐴 ↑𝑜
𝑦))
·𝑜 𝐴) = ((𝐴 ↑𝑜 𝐵) ·𝑜
((𝐴
↑𝑜 𝑦) ·𝑜 𝐴))) |
| 46 | 43, 45 | syl 17 |
. . . . . . 7
⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (((𝐴 ↑𝑜
𝐵)
·𝑜 (𝐴 ↑𝑜 𝑦)) ·𝑜
𝐴) = ((𝐴 ↑𝑜 𝐵) ·𝑜
((𝐴
↑𝑜 𝑦) ·𝑜 𝐴))) |
| 47 | | oesuc 7607 |
. . . . . . . 8
⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ↑𝑜 suc
𝑦) = ((𝐴 ↑𝑜 𝑦) ·𝑜
𝐴)) |
| 48 | 47 | oveq2d 6666 |
. . . . . . 7
⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 ↑𝑜
𝐵)
·𝑜 (𝐴 ↑𝑜 suc 𝑦)) = ((𝐴 ↑𝑜 𝐵) ·𝑜
((𝐴
↑𝑜 𝑦) ·𝑜 𝐴))) |
| 49 | 46, 48 | eqtr4d 2659 |
. . . . . 6
⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (((𝐴 ↑𝑜
𝐵)
·𝑜 (𝐴 ↑𝑜 𝑦)) ·𝑜
𝐴) = ((𝐴 ↑𝑜 𝐵) ·𝑜
(𝐴
↑𝑜 suc 𝑦))) |
| 50 | 21, 49 | mpan 706 |
. . . . 5
⊢ (𝑦 ∈ On → (((𝐴 ↑𝑜
𝐵)
·𝑜 (𝐴 ↑𝑜 𝑦)) ·𝑜
𝐴) = ((𝐴 ↑𝑜 𝐵) ·𝑜
(𝐴
↑𝑜 suc 𝑦))) |
| 51 | 50 | adantr 481 |
. . . 4
⊢ ((𝑦 ∈ On ∧ (𝐴 ↑𝑜
(𝐵 +𝑜
𝑦)) = ((𝐴 ↑𝑜 𝐵) ·𝑜
(𝐴
↑𝑜 𝑦))) → (((𝐴 ↑𝑜 𝐵) ·𝑜
(𝐴
↑𝑜 𝑦)) ·𝑜 𝐴) = ((𝐴 ↑𝑜 𝐵) ·𝑜
(𝐴
↑𝑜 suc 𝑦))) |
| 52 | 42, 51 | eqtrd 2656 |
. . 3
⊢ ((𝑦 ∈ On ∧ (𝐴 ↑𝑜
(𝐵 +𝑜
𝑦)) = ((𝐴 ↑𝑜 𝐵) ·𝑜
(𝐴
↑𝑜 𝑦))) → (𝐴 ↑𝑜 (𝐵 +𝑜 suc 𝑦)) = ((𝐴 ↑𝑜 𝐵) ·𝑜
(𝐴
↑𝑜 suc 𝑦))) |
| 53 | 52 | ex 450 |
. 2
⊢ (𝑦 ∈ On → ((𝐴 ↑𝑜
(𝐵 +𝑜
𝑦)) = ((𝐴 ↑𝑜 𝐵) ·𝑜
(𝐴
↑𝑜 𝑦)) → (𝐴 ↑𝑜 (𝐵 +𝑜 suc 𝑦)) = ((𝐴 ↑𝑜 𝐵) ·𝑜
(𝐴
↑𝑜 suc 𝑦)))) |
| 54 | | vex 3203 |
. . . . . . . 8
⊢ 𝑥 ∈ V |
| 55 | | oalim 7612 |
. . . . . . . . 9
⊢ ((𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝐵 +𝑜 𝑥) = ∪ 𝑦 ∈ 𝑥 (𝐵 +𝑜 𝑦)) |
| 56 | 22, 55 | mpan 706 |
. . . . . . . 8
⊢ ((𝑥 ∈ V ∧ Lim 𝑥) → (𝐵 +𝑜 𝑥) = ∪ 𝑦 ∈ 𝑥 (𝐵 +𝑜 𝑦)) |
| 57 | 54, 56 | mpan 706 |
. . . . . . 7
⊢ (Lim
𝑥 → (𝐵 +𝑜 𝑥) = ∪ 𝑦 ∈ 𝑥 (𝐵 +𝑜 𝑦)) |
| 58 | 57 | oveq2d 6666 |
. . . . . 6
⊢ (Lim
𝑥 → (𝐴 ↑𝑜 (𝐵 +𝑜 𝑥)) = (𝐴 ↑𝑜 ∪ 𝑦 ∈ 𝑥 (𝐵 +𝑜 𝑦))) |
| 59 | 54 | a1i 11 |
. . . . . . 7
⊢ (Lim
𝑥 → 𝑥 ∈ V) |
| 60 | | limord 5784 |
. . . . . . . . . 10
⊢ (Lim
𝑥 → Ord 𝑥) |
| 61 | | ordelon 5747 |
. . . . . . . . . 10
⊢ ((Ord
𝑥 ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ On) |
| 62 | 60, 61 | sylan 488 |
. . . . . . . . 9
⊢ ((Lim
𝑥 ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ On) |
| 63 | 22, 62, 36 | sylancr 695 |
. . . . . . . 8
⊢ ((Lim
𝑥 ∧ 𝑦 ∈ 𝑥) → (𝐵 +𝑜 𝑦) ∈ On) |
| 64 | 63 | ralrimiva 2966 |
. . . . . . 7
⊢ (Lim
𝑥 → ∀𝑦 ∈ 𝑥 (𝐵 +𝑜 𝑦) ∈ On) |
| 65 | | 0ellim 5787 |
. . . . . . . 8
⊢ (Lim
𝑥 → ∅ ∈
𝑥) |
| 66 | | ne0i 3921 |
. . . . . . . 8
⊢ (∅
∈ 𝑥 → 𝑥 ≠ ∅) |
| 67 | 65, 66 | syl 17 |
. . . . . . 7
⊢ (Lim
𝑥 → 𝑥 ≠ ∅) |
| 68 | | vex 3203 |
. . . . . . . . 9
⊢ 𝑤 ∈ V |
| 69 | | oeoalem.2 |
. . . . . . . . . . 11
⊢ ∅
∈ 𝐴 |
| 70 | | oelim 7614 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ On ∧ (𝑤 ∈ V ∧ Lim 𝑤)) ∧ ∅ ∈ 𝐴) → (𝐴 ↑𝑜 𝑤) = ∪ 𝑧 ∈ 𝑤 (𝐴 ↑𝑜 𝑧)) |
| 71 | 69, 70 | mpan2 707 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ On ∧ (𝑤 ∈ V ∧ Lim 𝑤)) → (𝐴 ↑𝑜 𝑤) = ∪ 𝑧 ∈ 𝑤 (𝐴 ↑𝑜 𝑧)) |
| 72 | 21, 71 | mpan 706 |
. . . . . . . . 9
⊢ ((𝑤 ∈ V ∧ Lim 𝑤) → (𝐴 ↑𝑜 𝑤) = ∪ 𝑧 ∈ 𝑤 (𝐴 ↑𝑜 𝑧)) |
| 73 | 68, 72 | mpan 706 |
. . . . . . . 8
⊢ (Lim
𝑤 → (𝐴 ↑𝑜 𝑤) = ∪ 𝑧 ∈ 𝑤 (𝐴 ↑𝑜 𝑧)) |
| 74 | | oewordi 7671 |
. . . . . . . . . . 11
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈
𝐴) → (𝑧 ⊆ 𝑤 → (𝐴 ↑𝑜 𝑧) ⊆ (𝐴 ↑𝑜 𝑤))) |
| 75 | 69, 74 | mpan2 707 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ On ∧ 𝑤 ∈ On ∧ 𝐴 ∈ On) → (𝑧 ⊆ 𝑤 → (𝐴 ↑𝑜 𝑧) ⊆ (𝐴 ↑𝑜 𝑤))) |
| 76 | 21, 75 | mp3an3 1413 |
. . . . . . . . 9
⊢ ((𝑧 ∈ On ∧ 𝑤 ∈ On) → (𝑧 ⊆ 𝑤 → (𝐴 ↑𝑜 𝑧) ⊆ (𝐴 ↑𝑜 𝑤))) |
| 77 | 76 | 3impia 1261 |
. . . . . . . 8
⊢ ((𝑧 ∈ On ∧ 𝑤 ∈ On ∧ 𝑧 ⊆ 𝑤) → (𝐴 ↑𝑜 𝑧) ⊆ (𝐴 ↑𝑜 𝑤)) |
| 78 | 73, 77 | onoviun 7440 |
. . . . . . 7
⊢ ((𝑥 ∈ V ∧ ∀𝑦 ∈ 𝑥 (𝐵 +𝑜 𝑦) ∈ On ∧ 𝑥 ≠ ∅) → (𝐴 ↑𝑜 ∪ 𝑦 ∈ 𝑥 (𝐵 +𝑜 𝑦)) = ∪
𝑦 ∈ 𝑥 (𝐴 ↑𝑜 (𝐵 +𝑜 𝑦))) |
| 79 | 59, 64, 67, 78 | syl3anc 1326 |
. . . . . 6
⊢ (Lim
𝑥 → (𝐴 ↑𝑜 ∪ 𝑦 ∈ 𝑥 (𝐵 +𝑜 𝑦)) = ∪
𝑦 ∈ 𝑥 (𝐴 ↑𝑜 (𝐵 +𝑜 𝑦))) |
| 80 | 58, 79 | eqtrd 2656 |
. . . . 5
⊢ (Lim
𝑥 → (𝐴 ↑𝑜 (𝐵 +𝑜 𝑥)) = ∪ 𝑦 ∈ 𝑥 (𝐴 ↑𝑜 (𝐵 +𝑜 𝑦))) |
| 81 | | iuneq2 4537 |
. . . . 5
⊢
(∀𝑦 ∈
𝑥 (𝐴 ↑𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ↑𝑜 𝐵) ·𝑜
(𝐴
↑𝑜 𝑦)) → ∪
𝑦 ∈ 𝑥 (𝐴 ↑𝑜 (𝐵 +𝑜 𝑦)) = ∪ 𝑦 ∈ 𝑥 ((𝐴 ↑𝑜 𝐵) ·𝑜
(𝐴
↑𝑜 𝑦))) |
| 82 | 80, 81 | sylan9eq 2676 |
. . . 4
⊢ ((Lim
𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝐴 ↑𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ↑𝑜 𝐵) ·𝑜
(𝐴
↑𝑜 𝑦))) → (𝐴 ↑𝑜 (𝐵 +𝑜 𝑥)) = ∪ 𝑦 ∈ 𝑥 ((𝐴 ↑𝑜 𝐵) ·𝑜
(𝐴
↑𝑜 𝑦))) |
| 83 | | oelim 7614 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ ∅ ∈ 𝐴) → (𝐴 ↑𝑜 𝑥) = ∪ 𝑦 ∈ 𝑥 (𝐴 ↑𝑜 𝑦)) |
| 84 | 69, 83 | mpan2 707 |
. . . . . . . . 9
⊢ ((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝐴 ↑𝑜 𝑥) = ∪ 𝑦 ∈ 𝑥 (𝐴 ↑𝑜 𝑦)) |
| 85 | 21, 84 | mpan 706 |
. . . . . . . 8
⊢ ((𝑥 ∈ V ∧ Lim 𝑥) → (𝐴 ↑𝑜 𝑥) = ∪ 𝑦 ∈ 𝑥 (𝐴 ↑𝑜 𝑦)) |
| 86 | 54, 85 | mpan 706 |
. . . . . . 7
⊢ (Lim
𝑥 → (𝐴 ↑𝑜 𝑥) = ∪ 𝑦 ∈ 𝑥 (𝐴 ↑𝑜 𝑦)) |
| 87 | 86 | oveq2d 6666 |
. . . . . 6
⊢ (Lim
𝑥 → ((𝐴 ↑𝑜
𝐵)
·𝑜 (𝐴 ↑𝑜 𝑥)) = ((𝐴 ↑𝑜 𝐵) ·𝑜
∪ 𝑦 ∈ 𝑥 (𝐴 ↑𝑜 𝑦))) |
| 88 | 21, 62, 43 | sylancr 695 |
. . . . . . . 8
⊢ ((Lim
𝑥 ∧ 𝑦 ∈ 𝑥) → (𝐴 ↑𝑜 𝑦) ∈ On) |
| 89 | 88 | ralrimiva 2966 |
. . . . . . 7
⊢ (Lim
𝑥 → ∀𝑦 ∈ 𝑥 (𝐴 ↑𝑜 𝑦) ∈ On) |
| 90 | | omlim 7613 |
. . . . . . . . . 10
⊢ (((𝐴 ↑𝑜
𝐵) ∈ On ∧ (𝑤 ∈ V ∧ Lim 𝑤)) → ((𝐴 ↑𝑜 𝐵) ·𝑜
𝑤) = ∪ 𝑧 ∈ 𝑤 ((𝐴 ↑𝑜 𝐵) ·𝑜
𝑧)) |
| 91 | 24, 90 | mpan 706 |
. . . . . . . . 9
⊢ ((𝑤 ∈ V ∧ Lim 𝑤) → ((𝐴 ↑𝑜 𝐵) ·𝑜
𝑤) = ∪ 𝑧 ∈ 𝑤 ((𝐴 ↑𝑜 𝐵) ·𝑜
𝑧)) |
| 92 | 68, 91 | mpan 706 |
. . . . . . . 8
⊢ (Lim
𝑤 → ((𝐴 ↑𝑜
𝐵)
·𝑜 𝑤) = ∪ 𝑧 ∈ 𝑤 ((𝐴 ↑𝑜 𝐵) ·𝑜
𝑧)) |
| 93 | | omwordi 7651 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ On ∧ 𝑤 ∈ On ∧ (𝐴 ↑𝑜
𝐵) ∈ On) → (𝑧 ⊆ 𝑤 → ((𝐴 ↑𝑜 𝐵) ·𝑜
𝑧) ⊆ ((𝐴 ↑𝑜
𝐵)
·𝑜 𝑤))) |
| 94 | 24, 93 | mp3an3 1413 |
. . . . . . . . 9
⊢ ((𝑧 ∈ On ∧ 𝑤 ∈ On) → (𝑧 ⊆ 𝑤 → ((𝐴 ↑𝑜 𝐵) ·𝑜
𝑧) ⊆ ((𝐴 ↑𝑜
𝐵)
·𝑜 𝑤))) |
| 95 | 94 | 3impia 1261 |
. . . . . . . 8
⊢ ((𝑧 ∈ On ∧ 𝑤 ∈ On ∧ 𝑧 ⊆ 𝑤) → ((𝐴 ↑𝑜 𝐵) ·𝑜
𝑧) ⊆ ((𝐴 ↑𝑜
𝐵)
·𝑜 𝑤)) |
| 96 | 92, 95 | onoviun 7440 |
. . . . . . 7
⊢ ((𝑥 ∈ V ∧ ∀𝑦 ∈ 𝑥 (𝐴 ↑𝑜 𝑦) ∈ On ∧ 𝑥 ≠ ∅) → ((𝐴 ↑𝑜
𝐵)
·𝑜 ∪ 𝑦 ∈ 𝑥 (𝐴 ↑𝑜 𝑦)) = ∪ 𝑦 ∈ 𝑥 ((𝐴 ↑𝑜 𝐵) ·𝑜
(𝐴
↑𝑜 𝑦))) |
| 97 | 59, 89, 67, 96 | syl3anc 1326 |
. . . . . 6
⊢ (Lim
𝑥 → ((𝐴 ↑𝑜
𝐵)
·𝑜 ∪ 𝑦 ∈ 𝑥 (𝐴 ↑𝑜 𝑦)) = ∪ 𝑦 ∈ 𝑥 ((𝐴 ↑𝑜 𝐵) ·𝑜
(𝐴
↑𝑜 𝑦))) |
| 98 | 87, 97 | eqtrd 2656 |
. . . . 5
⊢ (Lim
𝑥 → ((𝐴 ↑𝑜
𝐵)
·𝑜 (𝐴 ↑𝑜 𝑥)) = ∪ 𝑦 ∈ 𝑥 ((𝐴 ↑𝑜 𝐵) ·𝑜
(𝐴
↑𝑜 𝑦))) |
| 99 | 98 | adantr 481 |
. . . 4
⊢ ((Lim
𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝐴 ↑𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ↑𝑜 𝐵) ·𝑜
(𝐴
↑𝑜 𝑦))) → ((𝐴 ↑𝑜 𝐵) ·𝑜
(𝐴
↑𝑜 𝑥)) = ∪
𝑦 ∈ 𝑥 ((𝐴 ↑𝑜 𝐵) ·𝑜
(𝐴
↑𝑜 𝑦))) |
| 100 | 82, 99 | eqtr4d 2659 |
. . 3
⊢ ((Lim
𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝐴 ↑𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ↑𝑜 𝐵) ·𝑜
(𝐴
↑𝑜 𝑦))) → (𝐴 ↑𝑜 (𝐵 +𝑜 𝑥)) = ((𝐴 ↑𝑜 𝐵) ·𝑜
(𝐴
↑𝑜 𝑥))) |
| 101 | 100 | ex 450 |
. 2
⊢ (Lim
𝑥 → (∀𝑦 ∈ 𝑥 (𝐴 ↑𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ↑𝑜 𝐵) ·𝑜
(𝐴
↑𝑜 𝑦)) → (𝐴 ↑𝑜 (𝐵 +𝑜 𝑥)) = ((𝐴 ↑𝑜 𝐵) ·𝑜
(𝐴
↑𝑜 𝑥)))) |
| 102 | 5, 10, 15, 20, 33, 53, 101 | tfinds 7059 |
1
⊢ (𝐶 ∈ On → (𝐴 ↑𝑜
(𝐵 +𝑜
𝐶)) = ((𝐴 ↑𝑜 𝐵) ·𝑜
(𝐴
↑𝑜 𝐶))) |