| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oeoalem | Structured version Visualization version Unicode version | ||
| Description: Lemma for oeoa 7677. (Contributed by Eric Schmidt, 26-May-2009.) |
| Ref | Expression |
|---|---|
| oeoalem.1 |
|
| oeoalem.2 |
|
| oeoalem.3 |
|
| Ref | Expression |
|---|---|
| oeoalem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 6658 |
. . . 4
| |
| 2 | 1 | oveq2d 6666 |
. . 3
|
| 3 | oveq2 6658 |
. . . 4
| |
| 4 | 3 | oveq2d 6666 |
. . 3
|
| 5 | 2, 4 | eqeq12d 2637 |
. 2
|
| 6 | oveq2 6658 |
. . . 4
| |
| 7 | 6 | oveq2d 6666 |
. . 3
|
| 8 | oveq2 6658 |
. . . 4
| |
| 9 | 8 | oveq2d 6666 |
. . 3
|
| 10 | 7, 9 | eqeq12d 2637 |
. 2
|
| 11 | oveq2 6658 |
. . . 4
| |
| 12 | 11 | oveq2d 6666 |
. . 3
|
| 13 | oveq2 6658 |
. . . 4
| |
| 14 | 13 | oveq2d 6666 |
. . 3
|
| 15 | 12, 14 | eqeq12d 2637 |
. 2
|
| 16 | oveq2 6658 |
. . . 4
| |
| 17 | 16 | oveq2d 6666 |
. . 3
|
| 18 | oveq2 6658 |
. . . 4
| |
| 19 | 18 | oveq2d 6666 |
. . 3
|
| 20 | 17, 19 | eqeq12d 2637 |
. 2
|
| 21 | oeoalem.1 |
. . . . 5
| |
| 22 | oeoalem.3 |
. . . . 5
| |
| 23 | oecl 7617 |
. . . . 5
| |
| 24 | 21, 22, 23 | mp2an 708 |
. . . 4
|
| 25 | om1 7622 |
. . . 4
| |
| 26 | 24, 25 | ax-mp 5 |
. . 3
|
| 27 | oe0 7602 |
. . . . 5
| |
| 28 | 21, 27 | ax-mp 5 |
. . . 4
|
| 29 | 28 | oveq2i 6661 |
. . 3
|
| 30 | oa0 7596 |
. . . . 5
| |
| 31 | 22, 30 | ax-mp 5 |
. . . 4
|
| 32 | 31 | oveq2i 6661 |
. . 3
|
| 33 | 26, 29, 32 | 3eqtr4ri 2655 |
. 2
|
| 34 | oasuc 7604 |
. . . . . . . 8
| |
| 35 | 34 | oveq2d 6666 |
. . . . . . 7
|
| 36 | oacl 7615 |
. . . . . . . 8
| |
| 37 | oesuc 7607 |
. . . . . . . 8
| |
| 38 | 21, 36, 37 | sylancr 695 |
. . . . . . 7
|
| 39 | 35, 38 | eqtrd 2656 |
. . . . . 6
|
| 40 | 22, 39 | mpan 706 |
. . . . 5
|
| 41 | oveq1 6657 |
. . . . 5
| |
| 42 | 40, 41 | sylan9eq 2676 |
. . . 4
|
| 43 | oecl 7617 |
. . . . . . . 8
| |
| 44 | omass 7660 |
. . . . . . . . 9
| |
| 45 | 24, 21, 44 | mp3an13 1415 |
. . . . . . . 8
|
| 46 | 43, 45 | syl 17 |
. . . . . . 7
|
| 47 | oesuc 7607 |
. . . . . . . 8
| |
| 48 | 47 | oveq2d 6666 |
. . . . . . 7
|
| 49 | 46, 48 | eqtr4d 2659 |
. . . . . 6
|
| 50 | 21, 49 | mpan 706 |
. . . . 5
|
| 51 | 50 | adantr 481 |
. . . 4
|
| 52 | 42, 51 | eqtrd 2656 |
. . 3
|
| 53 | 52 | ex 450 |
. 2
|
| 54 | vex 3203 |
. . . . . . . 8
| |
| 55 | oalim 7612 |
. . . . . . . . 9
| |
| 56 | 22, 55 | mpan 706 |
. . . . . . . 8
|
| 57 | 54, 56 | mpan 706 |
. . . . . . 7
|
| 58 | 57 | oveq2d 6666 |
. . . . . 6
|
| 59 | 54 | a1i 11 |
. . . . . . 7
|
| 60 | limord 5784 |
. . . . . . . . . 10
| |
| 61 | ordelon 5747 |
. . . . . . . . . 10
| |
| 62 | 60, 61 | sylan 488 |
. . . . . . . . 9
|
| 63 | 22, 62, 36 | sylancr 695 |
. . . . . . . 8
|
| 64 | 63 | ralrimiva 2966 |
. . . . . . 7
|
| 65 | 0ellim 5787 |
. . . . . . . 8
| |
| 66 | ne0i 3921 |
. . . . . . . 8
| |
| 67 | 65, 66 | syl 17 |
. . . . . . 7
|
| 68 | vex 3203 |
. . . . . . . . 9
| |
| 69 | oeoalem.2 |
. . . . . . . . . . 11
| |
| 70 | oelim 7614 |
. . . . . . . . . . 11
| |
| 71 | 69, 70 | mpan2 707 |
. . . . . . . . . 10
|
| 72 | 21, 71 | mpan 706 |
. . . . . . . . 9
|
| 73 | 68, 72 | mpan 706 |
. . . . . . . 8
|
| 74 | oewordi 7671 |
. . . . . . . . . . 11
| |
| 75 | 69, 74 | mpan2 707 |
. . . . . . . . . 10
|
| 76 | 21, 75 | mp3an3 1413 |
. . . . . . . . 9
|
| 77 | 76 | 3impia 1261 |
. . . . . . . 8
|
| 78 | 73, 77 | onoviun 7440 |
. . . . . . 7
|
| 79 | 59, 64, 67, 78 | syl3anc 1326 |
. . . . . 6
|
| 80 | 58, 79 | eqtrd 2656 |
. . . . 5
|
| 81 | iuneq2 4537 |
. . . . 5
| |
| 82 | 80, 81 | sylan9eq 2676 |
. . . 4
|
| 83 | oelim 7614 |
. . . . . . . . . 10
| |
| 84 | 69, 83 | mpan2 707 |
. . . . . . . . 9
|
| 85 | 21, 84 | mpan 706 |
. . . . . . . 8
|
| 86 | 54, 85 | mpan 706 |
. . . . . . 7
|
| 87 | 86 | oveq2d 6666 |
. . . . . 6
|
| 88 | 21, 62, 43 | sylancr 695 |
. . . . . . . 8
|
| 89 | 88 | ralrimiva 2966 |
. . . . . . 7
|
| 90 | omlim 7613 |
. . . . . . . . . 10
| |
| 91 | 24, 90 | mpan 706 |
. . . . . . . . 9
|
| 92 | 68, 91 | mpan 706 |
. . . . . . . 8
|
| 93 | omwordi 7651 |
. . . . . . . . . 10
| |
| 94 | 24, 93 | mp3an3 1413 |
. . . . . . . . 9
|
| 95 | 94 | 3impia 1261 |
. . . . . . . 8
|
| 96 | 92, 95 | onoviun 7440 |
. . . . . . 7
|
| 97 | 59, 89, 67, 96 | syl3anc 1326 |
. . . . . 6
|
| 98 | 87, 97 | eqtrd 2656 |
. . . . 5
|
| 99 | 98 | adantr 481 |
. . . 4
|
| 100 | 82, 99 | eqtr4d 2659 |
. . 3
|
| 101 | 100 | ex 450 |
. 2
|
| 102 | 5, 10, 15, 20, 33, 53, 101 | tfinds 7059 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-oadd 7564 df-omul 7565 df-oexp 7566 |
| This theorem is referenced by: oeoa 7677 |
| Copyright terms: Public domain | W3C validator |