MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oewordi Structured version   Visualization version   GIF version

Theorem oewordi 7671
Description: Weak ordering property of ordinal exponentiation. (Contributed by NM, 6-Jan-2005.)
Assertion
Ref Expression
oewordi (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐶) → (𝐴𝐵 → (𝐶𝑜 𝐴) ⊆ (𝐶𝑜 𝐵)))

Proof of Theorem oewordi
StepHypRef Expression
1 eloni 5733 . . . . . 6 (𝐶 ∈ On → Ord 𝐶)
2 ordgt0ge1 7577 . . . . . 6 (Ord 𝐶 → (∅ ∈ 𝐶 ↔ 1𝑜𝐶))
31, 2syl 17 . . . . 5 (𝐶 ∈ On → (∅ ∈ 𝐶 ↔ 1𝑜𝐶))
4 1on 7567 . . . . . 6 1𝑜 ∈ On
5 onsseleq 5765 . . . . . 6 ((1𝑜 ∈ On ∧ 𝐶 ∈ On) → (1𝑜𝐶 ↔ (1𝑜𝐶 ∨ 1𝑜 = 𝐶)))
64, 5mpan 706 . . . . 5 (𝐶 ∈ On → (1𝑜𝐶 ↔ (1𝑜𝐶 ∨ 1𝑜 = 𝐶)))
73, 6bitrd 268 . . . 4 (𝐶 ∈ On → (∅ ∈ 𝐶 ↔ (1𝑜𝐶 ∨ 1𝑜 = 𝐶)))
873ad2ant3 1084 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (∅ ∈ 𝐶 ↔ (1𝑜𝐶 ∨ 1𝑜 = 𝐶)))
9 ondif2 7582 . . . . . . 7 (𝐶 ∈ (On ∖ 2𝑜) ↔ (𝐶 ∈ On ∧ 1𝑜𝐶))
10 oeword 7670 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2𝑜)) → (𝐴𝐵 ↔ (𝐶𝑜 𝐴) ⊆ (𝐶𝑜 𝐵)))
1110biimpd 219 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2𝑜)) → (𝐴𝐵 → (𝐶𝑜 𝐴) ⊆ (𝐶𝑜 𝐵)))
12113expia 1267 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐶 ∈ (On ∖ 2𝑜) → (𝐴𝐵 → (𝐶𝑜 𝐴) ⊆ (𝐶𝑜 𝐵))))
139, 12syl5bir 233 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐶 ∈ On ∧ 1𝑜𝐶) → (𝐴𝐵 → (𝐶𝑜 𝐴) ⊆ (𝐶𝑜 𝐵))))
1413expd 452 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐶 ∈ On → (1𝑜𝐶 → (𝐴𝐵 → (𝐶𝑜 𝐴) ⊆ (𝐶𝑜 𝐵)))))
15143impia 1261 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (1𝑜𝐶 → (𝐴𝐵 → (𝐶𝑜 𝐴) ⊆ (𝐶𝑜 𝐵))))
16 oe1m 7625 . . . . . . . . . 10 (𝐴 ∈ On → (1𝑜𝑜 𝐴) = 1𝑜)
1716adantr 481 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (1𝑜𝑜 𝐴) = 1𝑜)
18 oe1m 7625 . . . . . . . . . 10 (𝐵 ∈ On → (1𝑜𝑜 𝐵) = 1𝑜)
1918adantl 482 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (1𝑜𝑜 𝐵) = 1𝑜)
2017, 19eqtr4d 2659 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (1𝑜𝑜 𝐴) = (1𝑜𝑜 𝐵))
21 eqimss 3657 . . . . . . . 8 ((1𝑜𝑜 𝐴) = (1𝑜𝑜 𝐵) → (1𝑜𝑜 𝐴) ⊆ (1𝑜𝑜 𝐵))
2220, 21syl 17 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (1𝑜𝑜 𝐴) ⊆ (1𝑜𝑜 𝐵))
23 oveq1 6657 . . . . . . . 8 (1𝑜 = 𝐶 → (1𝑜𝑜 𝐴) = (𝐶𝑜 𝐴))
24 oveq1 6657 . . . . . . . 8 (1𝑜 = 𝐶 → (1𝑜𝑜 𝐵) = (𝐶𝑜 𝐵))
2523, 24sseq12d 3634 . . . . . . 7 (1𝑜 = 𝐶 → ((1𝑜𝑜 𝐴) ⊆ (1𝑜𝑜 𝐵) ↔ (𝐶𝑜 𝐴) ⊆ (𝐶𝑜 𝐵)))
2622, 25syl5ibcom 235 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (1𝑜 = 𝐶 → (𝐶𝑜 𝐴) ⊆ (𝐶𝑜 𝐵)))
27263adant3 1081 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (1𝑜 = 𝐶 → (𝐶𝑜 𝐴) ⊆ (𝐶𝑜 𝐵)))
2827a1dd 50 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (1𝑜 = 𝐶 → (𝐴𝐵 → (𝐶𝑜 𝐴) ⊆ (𝐶𝑜 𝐵))))
2915, 28jaod 395 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((1𝑜𝐶 ∨ 1𝑜 = 𝐶) → (𝐴𝐵 → (𝐶𝑜 𝐴) ⊆ (𝐶𝑜 𝐵))))
308, 29sylbid 230 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (∅ ∈ 𝐶 → (𝐴𝐵 → (𝐶𝑜 𝐴) ⊆ (𝐶𝑜 𝐵))))
3130imp 445 1 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐶) → (𝐴𝐵 → (𝐶𝑜 𝐴) ⊆ (𝐶𝑜 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  cdif 3571  wss 3574  c0 3915  Ord word 5722  Oncon0 5723  (class class class)co 6650  1𝑜c1o 7553  2𝑜c2o 7554  𝑜 coe 7559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-oexp 7566
This theorem is referenced by:  oelim2  7675  oeoalem  7676  oeoelem  7678  oaabs2  7725  cantnflt  8569  cnfcom  8597
  Copyright terms: Public domain W3C validator