Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofdivdiv2 Structured version   Visualization version   GIF version

Theorem ofdivdiv2 38527
Description: Function analogue of divdiv2 10737. (Contributed by Steve Rodriguez, 23-Nov-2015.)
Assertion
Ref Expression
ofdivdiv2 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) → (𝐹𝑓 / (𝐺𝑓 / 𝐻)) = ((𝐹𝑓 · 𝐻) ∘𝑓 / 𝐺))

Proof of Theorem ofdivdiv2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpll 790 . 2 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) → 𝐴𝑉)
2 simplr 792 . . 3 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) → 𝐹:𝐴⟶ℂ)
3 ffn 6045 . . 3 (𝐹:𝐴⟶ℂ → 𝐹 Fn 𝐴)
42, 3syl 17 . 2 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) → 𝐹 Fn 𝐴)
5 simprl 794 . . . 4 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) → 𝐺:𝐴⟶(ℂ ∖ {0}))
6 ffn 6045 . . . 4 (𝐺:𝐴⟶(ℂ ∖ {0}) → 𝐺 Fn 𝐴)
75, 6syl 17 . . 3 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) → 𝐺 Fn 𝐴)
8 simprr 796 . . . 4 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) → 𝐻:𝐴⟶(ℂ ∖ {0}))
9 ffn 6045 . . . 4 (𝐻:𝐴⟶(ℂ ∖ {0}) → 𝐻 Fn 𝐴)
108, 9syl 17 . . 3 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) → 𝐻 Fn 𝐴)
11 inidm 3822 . . 3 (𝐴𝐴) = 𝐴
127, 10, 1, 1, 11offn 6908 . 2 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) → (𝐺𝑓 / 𝐻) Fn 𝐴)
134, 10, 1, 1, 11offn 6908 . . 3 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) → (𝐹𝑓 · 𝐻) Fn 𝐴)
1413, 7, 1, 1, 11offn 6908 . 2 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) → ((𝐹𝑓 · 𝐻) ∘𝑓 / 𝐺) Fn 𝐴)
15 eqidd 2623 . 2 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) ∧ 𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
16 eqidd 2623 . 2 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) ∧ 𝑥𝐴) → ((𝐺𝑓 / 𝐻)‘𝑥) = ((𝐺𝑓 / 𝐻)‘𝑥))
17 ffvelrn 6357 . . . . 5 ((𝐹:𝐴⟶ℂ ∧ 𝑥𝐴) → (𝐹𝑥) ∈ ℂ)
182, 17sylan 488 . . . 4 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ ℂ)
19 ffvelrn 6357 . . . . . 6 ((𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝑥𝐴) → (𝐺𝑥) ∈ (ℂ ∖ {0}))
20 eldifsn 4317 . . . . . 6 ((𝐺𝑥) ∈ (ℂ ∖ {0}) ↔ ((𝐺𝑥) ∈ ℂ ∧ (𝐺𝑥) ≠ 0))
2119, 20sylib 208 . . . . 5 ((𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝑥𝐴) → ((𝐺𝑥) ∈ ℂ ∧ (𝐺𝑥) ≠ 0))
225, 21sylan 488 . . . 4 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) ∧ 𝑥𝐴) → ((𝐺𝑥) ∈ ℂ ∧ (𝐺𝑥) ≠ 0))
23 ffvelrn 6357 . . . . . 6 ((𝐻:𝐴⟶(ℂ ∖ {0}) ∧ 𝑥𝐴) → (𝐻𝑥) ∈ (ℂ ∖ {0}))
24 eldifsn 4317 . . . . . 6 ((𝐻𝑥) ∈ (ℂ ∖ {0}) ↔ ((𝐻𝑥) ∈ ℂ ∧ (𝐻𝑥) ≠ 0))
2523, 24sylib 208 . . . . 5 ((𝐻:𝐴⟶(ℂ ∖ {0}) ∧ 𝑥𝐴) → ((𝐻𝑥) ∈ ℂ ∧ (𝐻𝑥) ≠ 0))
268, 25sylan 488 . . . 4 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) ∧ 𝑥𝐴) → ((𝐻𝑥) ∈ ℂ ∧ (𝐻𝑥) ≠ 0))
27 divdiv2 10737 . . . 4 (((𝐹𝑥) ∈ ℂ ∧ ((𝐺𝑥) ∈ ℂ ∧ (𝐺𝑥) ≠ 0) ∧ ((𝐻𝑥) ∈ ℂ ∧ (𝐻𝑥) ≠ 0)) → ((𝐹𝑥) / ((𝐺𝑥) / (𝐻𝑥))) = (((𝐹𝑥) · (𝐻𝑥)) / (𝐺𝑥)))
2818, 22, 26, 27syl3anc 1326 . . 3 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) ∧ 𝑥𝐴) → ((𝐹𝑥) / ((𝐺𝑥) / (𝐻𝑥))) = (((𝐹𝑥) · (𝐻𝑥)) / (𝐺𝑥)))
29 eqidd 2623 . . . . 5 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) ∧ 𝑥𝐴) → (𝐺𝑥) = (𝐺𝑥))
30 eqidd 2623 . . . . 5 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) ∧ 𝑥𝐴) → (𝐻𝑥) = (𝐻𝑥))
317, 10, 1, 1, 11, 29, 30ofval 6906 . . . 4 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) ∧ 𝑥𝐴) → ((𝐺𝑓 / 𝐻)‘𝑥) = ((𝐺𝑥) / (𝐻𝑥)))
3231oveq2d 6666 . . 3 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) ∧ 𝑥𝐴) → ((𝐹𝑥) / ((𝐺𝑓 / 𝐻)‘𝑥)) = ((𝐹𝑥) / ((𝐺𝑥) / (𝐻𝑥))))
334, 10, 1, 1, 11, 15, 30ofval 6906 . . . 4 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) ∧ 𝑥𝐴) → ((𝐹𝑓 · 𝐻)‘𝑥) = ((𝐹𝑥) · (𝐻𝑥)))
3413, 7, 1, 1, 11, 33, 29ofval 6906 . . 3 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) ∧ 𝑥𝐴) → (((𝐹𝑓 · 𝐻) ∘𝑓 / 𝐺)‘𝑥) = (((𝐹𝑥) · (𝐻𝑥)) / (𝐺𝑥)))
3528, 32, 343eqtr4d 2666 . 2 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) ∧ 𝑥𝐴) → ((𝐹𝑥) / ((𝐺𝑓 / 𝐻)‘𝑥)) = (((𝐹𝑓 · 𝐻) ∘𝑓 / 𝐺)‘𝑥))
361, 4, 12, 14, 15, 16, 35offveq 6918 1 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) → (𝐹𝑓 / (𝐺𝑓 / 𝐻)) = ((𝐹𝑓 · 𝐻) ∘𝑓 / 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wne 2794  cdif 3571  {csn 4177   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  𝑓 cof 6895  cc 9934  0cc0 9936   · cmul 9941   / cdiv 10684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator