MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omword1 Structured version   Visualization version   GIF version

Theorem omword1 7653
Description: An ordinal is less than or equal to its product with another. (Contributed by NM, 21-Dec-2004.)
Assertion
Ref Expression
omword1 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐵) → 𝐴 ⊆ (𝐴 ·𝑜 𝐵))

Proof of Theorem omword1
StepHypRef Expression
1 eloni 5733 . . . . 5 (𝐵 ∈ On → Ord 𝐵)
2 ordgt0ge1 7577 . . . . 5 (Ord 𝐵 → (∅ ∈ 𝐵 ↔ 1𝑜𝐵))
31, 2syl 17 . . . 4 (𝐵 ∈ On → (∅ ∈ 𝐵 ↔ 1𝑜𝐵))
43adantl 482 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ∈ 𝐵 ↔ 1𝑜𝐵))
5 1on 7567 . . . . . 6 1𝑜 ∈ On
6 omwordi 7651 . . . . . 6 ((1𝑜 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On) → (1𝑜𝐵 → (𝐴 ·𝑜 1𝑜) ⊆ (𝐴 ·𝑜 𝐵)))
75, 6mp3an1 1411 . . . . 5 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (1𝑜𝐵 → (𝐴 ·𝑜 1𝑜) ⊆ (𝐴 ·𝑜 𝐵)))
87ancoms 469 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (1𝑜𝐵 → (𝐴 ·𝑜 1𝑜) ⊆ (𝐴 ·𝑜 𝐵)))
9 om1 7622 . . . . . 6 (𝐴 ∈ On → (𝐴 ·𝑜 1𝑜) = 𝐴)
109adantr 481 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·𝑜 1𝑜) = 𝐴)
1110sseq1d 3632 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·𝑜 1𝑜) ⊆ (𝐴 ·𝑜 𝐵) ↔ 𝐴 ⊆ (𝐴 ·𝑜 𝐵)))
128, 11sylibd 229 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (1𝑜𝐵𝐴 ⊆ (𝐴 ·𝑜 𝐵)))
134, 12sylbid 230 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ∈ 𝐵𝐴 ⊆ (𝐴 ·𝑜 𝐵)))
1413imp 445 1 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐵) → 𝐴 ⊆ (𝐴 ·𝑜 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wss 3574  c0 3915  Ord word 5722  Oncon0 5723  (class class class)co 6650  1𝑜c1o 7553   ·𝑜 comu 7558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-omul 7565
This theorem is referenced by:  om00  7655  cantnflem3  8588  cantnflem4  8589  cnfcomlem  8596
  Copyright terms: Public domain W3C validator