MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnflem3 Structured version   Visualization version   GIF version

Theorem cantnflem3 8588
Description: Lemma for cantnf 8590. Here we show existence of Cantor normal forms. Assuming (by transfinite induction) that every number less than 𝐶 has a normal form, we can use oeeu 7683 to factor 𝐶 into the form ((𝐴𝑜 𝑋) ·𝑜 𝑌) +𝑜 𝑍 where 0 < 𝑌 < 𝐴 and 𝑍 < (𝐴𝑜 𝑋) (and a fortiori 𝑋 < 𝐵). Then since 𝑍 < (𝐴𝑜 𝑋) ≤ (𝐴𝑜 𝑋) ·𝑜 𝑌𝐶, 𝑍 has a normal form, and by appending the term (𝐴𝑜 𝑋) ·𝑜 𝑌 using cantnfp1 8578 we get a normal form for 𝐶. (Contributed by Mario Carneiro, 28-May-2015.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
oemapval.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
cantnf.c (𝜑𝐶 ∈ (𝐴𝑜 𝐵))
cantnf.s (𝜑𝐶 ⊆ ran (𝐴 CNF 𝐵))
cantnf.e (𝜑 → ∅ ∈ 𝐶)
cantnf.x 𝑋 = {𝑐 ∈ On ∣ 𝐶 ∈ (𝐴𝑜 𝑐)}
cantnf.p 𝑃 = (℩𝑑𝑎 ∈ On ∃𝑏 ∈ (𝐴𝑜 𝑋)(𝑑 = ⟨𝑎, 𝑏⟩ ∧ (((𝐴𝑜 𝑋) ·𝑜 𝑎) +𝑜 𝑏) = 𝐶))
cantnf.y 𝑌 = (1st𝑃)
cantnf.z 𝑍 = (2nd𝑃)
cantnf.g (𝜑𝐺𝑆)
cantnf.v (𝜑 → ((𝐴 CNF 𝐵)‘𝐺) = 𝑍)
cantnf.f 𝐹 = (𝑡𝐵 ↦ if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)))
Assertion
Ref Expression
cantnflem3 (𝜑𝐶 ∈ ran (𝐴 CNF 𝐵))
Distinct variable groups:   𝑡,𝑐,𝑤,𝑥,𝑦,𝑧,𝐵   𝑎,𝑏,𝑐,𝑑,𝑤,𝑥,𝑦,𝑧,𝐶   𝑡,𝑎,𝐴,𝑏,𝑐,𝑑,𝑤,𝑥,𝑦,𝑧   𝑇,𝑐,𝑡   𝑤,𝐹,𝑥,𝑦,𝑧   𝑆,𝑐,𝑡,𝑥,𝑦,𝑧   𝑡,𝑍,𝑥,𝑦,𝑧   𝐺,𝑐,𝑡,𝑤,𝑥,𝑦,𝑧   𝜑,𝑡,𝑥,𝑦,𝑧   𝑡,𝑌,𝑤,𝑥,𝑦,𝑧   𝑋,𝑎,𝑏,𝑑,𝑡,𝑤,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑤,𝑎,𝑏,𝑐,𝑑)   𝐵(𝑎,𝑏,𝑑)   𝐶(𝑡)   𝑃(𝑥,𝑦,𝑧,𝑤,𝑡,𝑎,𝑏,𝑐,𝑑)   𝑆(𝑤,𝑎,𝑏,𝑑)   𝑇(𝑥,𝑦,𝑧,𝑤,𝑎,𝑏,𝑑)   𝐹(𝑡,𝑎,𝑏,𝑐,𝑑)   𝐺(𝑎,𝑏,𝑑)   𝑋(𝑐)   𝑌(𝑎,𝑏,𝑐,𝑑)   𝑍(𝑤,𝑎,𝑏,𝑐,𝑑)

Proof of Theorem cantnflem3
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 cantnfs.s . . . . 5 𝑆 = dom (𝐴 CNF 𝐵)
2 cantnfs.a . . . . 5 (𝜑𝐴 ∈ On)
3 cantnfs.b . . . . 5 (𝜑𝐵 ∈ On)
4 cantnf.g . . . . 5 (𝜑𝐺𝑆)
5 oemapval.t . . . . . . . . . . . . . 14 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
6 cantnf.c . . . . . . . . . . . . . 14 (𝜑𝐶 ∈ (𝐴𝑜 𝐵))
7 cantnf.s . . . . . . . . . . . . . 14 (𝜑𝐶 ⊆ ran (𝐴 CNF 𝐵))
8 cantnf.e . . . . . . . . . . . . . 14 (𝜑 → ∅ ∈ 𝐶)
91, 2, 3, 5, 6, 7, 8cantnflem2 8587 . . . . . . . . . . . . 13 (𝜑 → (𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐶 ∈ (On ∖ 1𝑜)))
10 eqid 2622 . . . . . . . . . . . . . . 15 𝑋 = 𝑋
11 eqid 2622 . . . . . . . . . . . . . . 15 𝑌 = 𝑌
12 eqid 2622 . . . . . . . . . . . . . . 15 𝑍 = 𝑍
1310, 11, 123pm3.2i 1239 . . . . . . . . . . . . . 14 (𝑋 = 𝑋𝑌 = 𝑌𝑍 = 𝑍)
14 cantnf.x . . . . . . . . . . . . . . 15 𝑋 = {𝑐 ∈ On ∣ 𝐶 ∈ (𝐴𝑜 𝑐)}
15 cantnf.p . . . . . . . . . . . . . . 15 𝑃 = (℩𝑑𝑎 ∈ On ∃𝑏 ∈ (𝐴𝑜 𝑋)(𝑑 = ⟨𝑎, 𝑏⟩ ∧ (((𝐴𝑜 𝑋) ·𝑜 𝑎) +𝑜 𝑏) = 𝐶))
16 cantnf.y . . . . . . . . . . . . . . 15 𝑌 = (1st𝑃)
17 cantnf.z . . . . . . . . . . . . . . 15 𝑍 = (2nd𝑃)
1814, 15, 16, 17oeeui 7682 . . . . . . . . . . . . . 14 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐶 ∈ (On ∖ 1𝑜)) → (((𝑋 ∈ On ∧ 𝑌 ∈ (𝐴 ∖ 1𝑜) ∧ 𝑍 ∈ (𝐴𝑜 𝑋)) ∧ (((𝐴𝑜 𝑋) ·𝑜 𝑌) +𝑜 𝑍) = 𝐶) ↔ (𝑋 = 𝑋𝑌 = 𝑌𝑍 = 𝑍)))
1913, 18mpbiri 248 . . . . . . . . . . . . 13 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐶 ∈ (On ∖ 1𝑜)) → ((𝑋 ∈ On ∧ 𝑌 ∈ (𝐴 ∖ 1𝑜) ∧ 𝑍 ∈ (𝐴𝑜 𝑋)) ∧ (((𝐴𝑜 𝑋) ·𝑜 𝑌) +𝑜 𝑍) = 𝐶))
209, 19syl 17 . . . . . . . . . . . 12 (𝜑 → ((𝑋 ∈ On ∧ 𝑌 ∈ (𝐴 ∖ 1𝑜) ∧ 𝑍 ∈ (𝐴𝑜 𝑋)) ∧ (((𝐴𝑜 𝑋) ·𝑜 𝑌) +𝑜 𝑍) = 𝐶))
2120simpld 475 . . . . . . . . . . 11 (𝜑 → (𝑋 ∈ On ∧ 𝑌 ∈ (𝐴 ∖ 1𝑜) ∧ 𝑍 ∈ (𝐴𝑜 𝑋)))
2221simp1d 1073 . . . . . . . . . 10 (𝜑𝑋 ∈ On)
23 oecl 7617 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝑋 ∈ On) → (𝐴𝑜 𝑋) ∈ On)
242, 22, 23syl2anc 693 . . . . . . . . 9 (𝜑 → (𝐴𝑜 𝑋) ∈ On)
2521simp2d 1074 . . . . . . . . . . 11 (𝜑𝑌 ∈ (𝐴 ∖ 1𝑜))
2625eldifad 3586 . . . . . . . . . 10 (𝜑𝑌𝐴)
27 onelon 5748 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝑌𝐴) → 𝑌 ∈ On)
282, 26, 27syl2anc 693 . . . . . . . . 9 (𝜑𝑌 ∈ On)
29 dif1o 7580 . . . . . . . . . . . 12 (𝑌 ∈ (𝐴 ∖ 1𝑜) ↔ (𝑌𝐴𝑌 ≠ ∅))
3029simprbi 480 . . . . . . . . . . 11 (𝑌 ∈ (𝐴 ∖ 1𝑜) → 𝑌 ≠ ∅)
3125, 30syl 17 . . . . . . . . . 10 (𝜑𝑌 ≠ ∅)
32 on0eln0 5780 . . . . . . . . . . 11 (𝑌 ∈ On → (∅ ∈ 𝑌𝑌 ≠ ∅))
3328, 32syl 17 . . . . . . . . . 10 (𝜑 → (∅ ∈ 𝑌𝑌 ≠ ∅))
3431, 33mpbird 247 . . . . . . . . 9 (𝜑 → ∅ ∈ 𝑌)
35 omword1 7653 . . . . . . . . 9 ((((𝐴𝑜 𝑋) ∈ On ∧ 𝑌 ∈ On) ∧ ∅ ∈ 𝑌) → (𝐴𝑜 𝑋) ⊆ ((𝐴𝑜 𝑋) ·𝑜 𝑌))
3624, 28, 34, 35syl21anc 1325 . . . . . . . 8 (𝜑 → (𝐴𝑜 𝑋) ⊆ ((𝐴𝑜 𝑋) ·𝑜 𝑌))
37 omcl 7616 . . . . . . . . . . 11 (((𝐴𝑜 𝑋) ∈ On ∧ 𝑌 ∈ On) → ((𝐴𝑜 𝑋) ·𝑜 𝑌) ∈ On)
3824, 28, 37syl2anc 693 . . . . . . . . . 10 (𝜑 → ((𝐴𝑜 𝑋) ·𝑜 𝑌) ∈ On)
3921simp3d 1075 . . . . . . . . . . 11 (𝜑𝑍 ∈ (𝐴𝑜 𝑋))
40 onelon 5748 . . . . . . . . . . 11 (((𝐴𝑜 𝑋) ∈ On ∧ 𝑍 ∈ (𝐴𝑜 𝑋)) → 𝑍 ∈ On)
4124, 39, 40syl2anc 693 . . . . . . . . . 10 (𝜑𝑍 ∈ On)
42 oaword1 7632 . . . . . . . . . 10 ((((𝐴𝑜 𝑋) ·𝑜 𝑌) ∈ On ∧ 𝑍 ∈ On) → ((𝐴𝑜 𝑋) ·𝑜 𝑌) ⊆ (((𝐴𝑜 𝑋) ·𝑜 𝑌) +𝑜 𝑍))
4338, 41, 42syl2anc 693 . . . . . . . . 9 (𝜑 → ((𝐴𝑜 𝑋) ·𝑜 𝑌) ⊆ (((𝐴𝑜 𝑋) ·𝑜 𝑌) +𝑜 𝑍))
4420simprd 479 . . . . . . . . 9 (𝜑 → (((𝐴𝑜 𝑋) ·𝑜 𝑌) +𝑜 𝑍) = 𝐶)
4543, 44sseqtrd 3641 . . . . . . . 8 (𝜑 → ((𝐴𝑜 𝑋) ·𝑜 𝑌) ⊆ 𝐶)
4636, 45sstrd 3613 . . . . . . 7 (𝜑 → (𝐴𝑜 𝑋) ⊆ 𝐶)
47 oecl 7617 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝑜 𝐵) ∈ On)
482, 3, 47syl2anc 693 . . . . . . . 8 (𝜑 → (𝐴𝑜 𝐵) ∈ On)
49 ontr2 5772 . . . . . . . 8 (((𝐴𝑜 𝑋) ∈ On ∧ (𝐴𝑜 𝐵) ∈ On) → (((𝐴𝑜 𝑋) ⊆ 𝐶𝐶 ∈ (𝐴𝑜 𝐵)) → (𝐴𝑜 𝑋) ∈ (𝐴𝑜 𝐵)))
5024, 48, 49syl2anc 693 . . . . . . 7 (𝜑 → (((𝐴𝑜 𝑋) ⊆ 𝐶𝐶 ∈ (𝐴𝑜 𝐵)) → (𝐴𝑜 𝑋) ∈ (𝐴𝑜 𝐵)))
5146, 6, 50mp2and 715 . . . . . 6 (𝜑 → (𝐴𝑜 𝑋) ∈ (𝐴𝑜 𝐵))
529simpld 475 . . . . . . 7 (𝜑𝐴 ∈ (On ∖ 2𝑜))
53 oeord 7668 . . . . . . 7 ((𝑋 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ (On ∖ 2𝑜)) → (𝑋𝐵 ↔ (𝐴𝑜 𝑋) ∈ (𝐴𝑜 𝐵)))
5422, 3, 52, 53syl3anc 1326 . . . . . 6 (𝜑 → (𝑋𝐵 ↔ (𝐴𝑜 𝑋) ∈ (𝐴𝑜 𝐵)))
5551, 54mpbird 247 . . . . 5 (𝜑𝑋𝐵)
562adantr 481 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → 𝐴 ∈ On)
573adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → 𝐵 ∈ On)
58 suppssdm 7308 . . . . . . . . . . . . . . 15 (𝐺 supp ∅) ⊆ dom 𝐺
591, 2, 3cantnfs 8563 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐺𝑆 ↔ (𝐺:𝐵𝐴𝐺 finSupp ∅)))
604, 59mpbid 222 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐺:𝐵𝐴𝐺 finSupp ∅))
6160simpld 475 . . . . . . . . . . . . . . . 16 (𝜑𝐺:𝐵𝐴)
62 fdm 6051 . . . . . . . . . . . . . . . 16 (𝐺:𝐵𝐴 → dom 𝐺 = 𝐵)
6361, 62syl 17 . . . . . . . . . . . . . . 15 (𝜑 → dom 𝐺 = 𝐵)
6458, 63syl5sseq 3653 . . . . . . . . . . . . . 14 (𝜑 → (𝐺 supp ∅) ⊆ 𝐵)
6564sselda 3603 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → 𝑥𝐵)
66 onelon 5748 . . . . . . . . . . . . 13 ((𝐵 ∈ On ∧ 𝑥𝐵) → 𝑥 ∈ On)
6757, 65, 66syl2anc 693 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → 𝑥 ∈ On)
68 oecl 7617 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴𝑜 𝑥) ∈ On)
6956, 67, 68syl2anc 693 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → (𝐴𝑜 𝑥) ∈ On)
7061adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → 𝐺:𝐵𝐴)
7170, 65ffvelrnd 6360 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → (𝐺𝑥) ∈ 𝐴)
72 onelon 5748 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ (𝐺𝑥) ∈ 𝐴) → (𝐺𝑥) ∈ On)
7356, 71, 72syl2anc 693 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → (𝐺𝑥) ∈ On)
74 ffn 6045 . . . . . . . . . . . . . . 15 (𝐺:𝐵𝐴𝐺 Fn 𝐵)
7561, 74syl 17 . . . . . . . . . . . . . 14 (𝜑𝐺 Fn 𝐵)
76 0ex 4790 . . . . . . . . . . . . . . 15 ∅ ∈ V
7776a1i 11 . . . . . . . . . . . . . 14 (𝜑 → ∅ ∈ V)
78 elsuppfn 7303 . . . . . . . . . . . . . 14 ((𝐺 Fn 𝐵𝐵 ∈ On ∧ ∅ ∈ V) → (𝑥 ∈ (𝐺 supp ∅) ↔ (𝑥𝐵 ∧ (𝐺𝑥) ≠ ∅)))
7975, 3, 77, 78syl3anc 1326 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ (𝐺 supp ∅) ↔ (𝑥𝐵 ∧ (𝐺𝑥) ≠ ∅)))
8079simplbda 654 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → (𝐺𝑥) ≠ ∅)
81 on0eln0 5780 . . . . . . . . . . . . 13 ((𝐺𝑥) ∈ On → (∅ ∈ (𝐺𝑥) ↔ (𝐺𝑥) ≠ ∅))
8273, 81syl 17 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → (∅ ∈ (𝐺𝑥) ↔ (𝐺𝑥) ≠ ∅))
8380, 82mpbird 247 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → ∅ ∈ (𝐺𝑥))
84 omword1 7653 . . . . . . . . . . 11 ((((𝐴𝑜 𝑥) ∈ On ∧ (𝐺𝑥) ∈ On) ∧ ∅ ∈ (𝐺𝑥)) → (𝐴𝑜 𝑥) ⊆ ((𝐴𝑜 𝑥) ·𝑜 (𝐺𝑥)))
8569, 73, 83, 84syl21anc 1325 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → (𝐴𝑜 𝑥) ⊆ ((𝐴𝑜 𝑥) ·𝑜 (𝐺𝑥)))
86 eqid 2622 . . . . . . . . . . . 12 OrdIso( E , (𝐺 supp ∅)) = OrdIso( E , (𝐺 supp ∅))
874adantr 481 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → 𝐺𝑆)
88 eqid 2622 . . . . . . . . . . . 12 seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (OrdIso( E , (𝐺 supp ∅))‘𝑘)) ·𝑜 (𝐺‘(OrdIso( E , (𝐺 supp ∅))‘𝑘))) +𝑜 𝑧)), ∅) = seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (OrdIso( E , (𝐺 supp ∅))‘𝑘)) ·𝑜 (𝐺‘(OrdIso( E , (𝐺 supp ∅))‘𝑘))) +𝑜 𝑧)), ∅)
891, 56, 57, 86, 87, 88, 65cantnfle 8568 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → ((𝐴𝑜 𝑥) ·𝑜 (𝐺𝑥)) ⊆ ((𝐴 CNF 𝐵)‘𝐺))
90 cantnf.v . . . . . . . . . . . 12 (𝜑 → ((𝐴 CNF 𝐵)‘𝐺) = 𝑍)
9190adantr 481 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → ((𝐴 CNF 𝐵)‘𝐺) = 𝑍)
9289, 91sseqtrd 3641 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → ((𝐴𝑜 𝑥) ·𝑜 (𝐺𝑥)) ⊆ 𝑍)
9385, 92sstrd 3613 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → (𝐴𝑜 𝑥) ⊆ 𝑍)
9439adantr 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → 𝑍 ∈ (𝐴𝑜 𝑋))
9524adantr 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → (𝐴𝑜 𝑋) ∈ On)
96 ontr2 5772 . . . . . . . . . 10 (((𝐴𝑜 𝑥) ∈ On ∧ (𝐴𝑜 𝑋) ∈ On) → (((𝐴𝑜 𝑥) ⊆ 𝑍𝑍 ∈ (𝐴𝑜 𝑋)) → (𝐴𝑜 𝑥) ∈ (𝐴𝑜 𝑋)))
9769, 95, 96syl2anc 693 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → (((𝐴𝑜 𝑥) ⊆ 𝑍𝑍 ∈ (𝐴𝑜 𝑋)) → (𝐴𝑜 𝑥) ∈ (𝐴𝑜 𝑋)))
9893, 94, 97mp2and 715 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → (𝐴𝑜 𝑥) ∈ (𝐴𝑜 𝑋))
9922adantr 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → 𝑋 ∈ On)
10052adantr 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → 𝐴 ∈ (On ∖ 2𝑜))
101 oeord 7668 . . . . . . . . 9 ((𝑥 ∈ On ∧ 𝑋 ∈ On ∧ 𝐴 ∈ (On ∖ 2𝑜)) → (𝑥𝑋 ↔ (𝐴𝑜 𝑥) ∈ (𝐴𝑜 𝑋)))
10267, 99, 100, 101syl3anc 1326 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → (𝑥𝑋 ↔ (𝐴𝑜 𝑥) ∈ (𝐴𝑜 𝑋)))
10398, 102mpbird 247 . . . . . . 7 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → 𝑥𝑋)
104103ex 450 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐺 supp ∅) → 𝑥𝑋))
105104ssrdv 3609 . . . . 5 (𝜑 → (𝐺 supp ∅) ⊆ 𝑋)
106 cantnf.f . . . . 5 𝐹 = (𝑡𝐵 ↦ if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)))
1071, 2, 3, 4, 55, 26, 105, 106cantnfp1 8578 . . . 4 (𝜑 → (𝐹𝑆 ∧ ((𝐴 CNF 𝐵)‘𝐹) = (((𝐴𝑜 𝑋) ·𝑜 𝑌) +𝑜 ((𝐴 CNF 𝐵)‘𝐺))))
108107simprd 479 . . 3 (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) = (((𝐴𝑜 𝑋) ·𝑜 𝑌) +𝑜 ((𝐴 CNF 𝐵)‘𝐺)))
10990oveq2d 6666 . . 3 (𝜑 → (((𝐴𝑜 𝑋) ·𝑜 𝑌) +𝑜 ((𝐴 CNF 𝐵)‘𝐺)) = (((𝐴𝑜 𝑋) ·𝑜 𝑌) +𝑜 𝑍))
110108, 109, 443eqtrd 2660 . 2 (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) = 𝐶)
1111, 2, 3cantnff 8571 . . . 4 (𝜑 → (𝐴 CNF 𝐵):𝑆⟶(𝐴𝑜 𝐵))
112 ffn 6045 . . . 4 ((𝐴 CNF 𝐵):𝑆⟶(𝐴𝑜 𝐵) → (𝐴 CNF 𝐵) Fn 𝑆)
113111, 112syl 17 . . 3 (𝜑 → (𝐴 CNF 𝐵) Fn 𝑆)
114107simpld 475 . . 3 (𝜑𝐹𝑆)
115 fnfvelrn 6356 . . 3 (((𝐴 CNF 𝐵) Fn 𝑆𝐹𝑆) → ((𝐴 CNF 𝐵)‘𝐹) ∈ ran (𝐴 CNF 𝐵))
116113, 114, 115syl2anc 693 . 2 (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) ∈ ran (𝐴 CNF 𝐵))
117110, 116eqeltrrd 2702 1 (𝜑𝐶 ∈ ran (𝐴 CNF 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  {crab 2916  Vcvv 3200  cdif 3571  wss 3574  c0 3915  ifcif 4086  cop 4183   cuni 4436   cint 4475   class class class wbr 4653  {copab 4712  cmpt 4729   E cep 5028  dom cdm 5114  ran crn 5115  Oncon0 5723  cio 5849   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  cmpt2 6652  1st c1st 7166  2nd c2nd 7167   supp csupp 7295  seq𝜔cseqom 7542  1𝑜c1o 7553  2𝑜c2o 7554   +𝑜 coa 7557   ·𝑜 comu 7558  𝑜 coe 7559   finSupp cfsupp 8275  OrdIsocoi 8414   CNF ccnf 8558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-seqom 7543  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-oexp 7566  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-cnf 8559
This theorem is referenced by:  cantnflem4  8589
  Copyright terms: Public domain W3C validator