MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ondif2 Structured version   Visualization version   GIF version

Theorem ondif2 7582
Description: Two ways to say that 𝐴 is an ordinal greater than one. (Contributed by Mario Carneiro, 21-May-2015.)
Assertion
Ref Expression
ondif2 (𝐴 ∈ (On ∖ 2𝑜) ↔ (𝐴 ∈ On ∧ 1𝑜𝐴))

Proof of Theorem ondif2
StepHypRef Expression
1 eldif 3584 . 2 (𝐴 ∈ (On ∖ 2𝑜) ↔ (𝐴 ∈ On ∧ ¬ 𝐴 ∈ 2𝑜))
2 1on 7567 . . . . 5 1𝑜 ∈ On
3 ontri1 5757 . . . . . 6 ((𝐴 ∈ On ∧ 1𝑜 ∈ On) → (𝐴 ⊆ 1𝑜 ↔ ¬ 1𝑜𝐴))
4 onsssuc 5813 . . . . . . 7 ((𝐴 ∈ On ∧ 1𝑜 ∈ On) → (𝐴 ⊆ 1𝑜𝐴 ∈ suc 1𝑜))
5 df-2o 7561 . . . . . . . 8 2𝑜 = suc 1𝑜
65eleq2i 2693 . . . . . . 7 (𝐴 ∈ 2𝑜𝐴 ∈ suc 1𝑜)
74, 6syl6bbr 278 . . . . . 6 ((𝐴 ∈ On ∧ 1𝑜 ∈ On) → (𝐴 ⊆ 1𝑜𝐴 ∈ 2𝑜))
83, 7bitr3d 270 . . . . 5 ((𝐴 ∈ On ∧ 1𝑜 ∈ On) → (¬ 1𝑜𝐴𝐴 ∈ 2𝑜))
92, 8mpan2 707 . . . 4 (𝐴 ∈ On → (¬ 1𝑜𝐴𝐴 ∈ 2𝑜))
109con1bid 345 . . 3 (𝐴 ∈ On → (¬ 𝐴 ∈ 2𝑜 ↔ 1𝑜𝐴))
1110pm5.32i 669 . 2 ((𝐴 ∈ On ∧ ¬ 𝐴 ∈ 2𝑜) ↔ (𝐴 ∈ On ∧ 1𝑜𝐴))
121, 11bitri 264 1 (𝐴 ∈ (On ∖ 2𝑜) ↔ (𝐴 ∈ On ∧ 1𝑜𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196  wa 384  wcel 1990  cdif 3571  wss 3574  Oncon0 5723  suc csuc 5725  1𝑜c1o 7553  2𝑜c2o 7554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726  df-on 5727  df-suc 5729  df-1o 7560  df-2o 7561
This theorem is referenced by:  dif20el  7585  oeordi  7667  oewordi  7671  oaabs2  7725  omabs  7727  cnfcom3clem  8602  infxpenc2lem1  8842
  Copyright terms: Public domain W3C validator