Proof of Theorem cnfcom3clem
| Step | Hyp | Ref
| Expression |
| 1 | | cnfcom3c.s |
. . . . . 6
⊢ 𝑆 = dom (ω CNF 𝐴) |
| 2 | | simp1 1061 |
. . . . . 6
⊢ ((𝐴 ∈ On ∧ 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏) → 𝐴 ∈ On) |
| 3 | | omelon 8543 |
. . . . . . . . 9
⊢ ω
∈ On |
| 4 | | 1onn 7719 |
. . . . . . . . 9
⊢
1𝑜 ∈ ω |
| 5 | | ondif2 7582 |
. . . . . . . . 9
⊢ (ω
∈ (On ∖ 2𝑜) ↔ (ω ∈ On ∧
1𝑜 ∈ ω)) |
| 6 | 3, 4, 5 | mpbir2an 955 |
. . . . . . . 8
⊢ ω
∈ (On ∖ 2𝑜) |
| 7 | | oeworde 7673 |
. . . . . . . 8
⊢ ((ω
∈ (On ∖ 2𝑜) ∧ 𝐴 ∈ On) → 𝐴 ⊆ (ω ↑𝑜
𝐴)) |
| 8 | 6, 2, 7 | sylancr 695 |
. . . . . . 7
⊢ ((𝐴 ∈ On ∧ 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏) → 𝐴 ⊆ (ω ↑𝑜
𝐴)) |
| 9 | | simp2 1062 |
. . . . . . 7
⊢ ((𝐴 ∈ On ∧ 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏) → 𝑏 ∈ 𝐴) |
| 10 | 8, 9 | sseldd 3604 |
. . . . . 6
⊢ ((𝐴 ∈ On ∧ 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏) → 𝑏 ∈ (ω ↑𝑜
𝐴)) |
| 11 | | cnfcom3c.f |
. . . . . 6
⊢ 𝐹 = (◡(ω CNF 𝐴)‘𝑏) |
| 12 | | cnfcom3c.g |
. . . . . 6
⊢ 𝐺 = OrdIso( E , (𝐹 supp ∅)) |
| 13 | | cnfcom3c.h |
. . . . . 6
⊢ 𝐻 =
seq𝜔((𝑘
∈ V, 𝑧 ∈ V
↦ (𝑀
+𝑜 𝑧)),
∅) |
| 14 | | cnfcom3c.t |
. . . . . 6
⊢ 𝑇 =
seq𝜔((𝑘
∈ V, 𝑓 ∈ V
↦ 𝐾),
∅) |
| 15 | | cnfcom3c.m |
. . . . . 6
⊢ 𝑀 = ((ω
↑𝑜 (𝐺‘𝑘)) ·𝑜 (𝐹‘(𝐺‘𝑘))) |
| 16 | | cnfcom3c.k |
. . . . . 6
⊢ 𝐾 = ((𝑥 ∈ 𝑀 ↦ (dom 𝑓 +𝑜 𝑥)) ∪ ◡(𝑥 ∈ dom 𝑓 ↦ (𝑀 +𝑜 𝑥))) |
| 17 | | cnfcom3c.w |
. . . . . 6
⊢ 𝑊 = (𝐺‘∪ dom
𝐺) |
| 18 | | simp3 1063 |
. . . . . 6
⊢ ((𝐴 ∈ On ∧ 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏) → ω ⊆ 𝑏) |
| 19 | 1, 2, 10, 11, 12, 13, 14, 15, 16, 17, 18 | cnfcom3lem 8600 |
. . . . 5
⊢ ((𝐴 ∈ On ∧ 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏) → 𝑊 ∈ (On ∖
1𝑜)) |
| 20 | | cnfcom3c.x |
. . . . . . 7
⊢ 𝑋 = (𝑢 ∈ (𝐹‘𝑊), 𝑣 ∈ (ω ↑𝑜
𝑊) ↦ (((𝐹‘𝑊) ·𝑜 𝑣) +𝑜 𝑢)) |
| 21 | | cnfcom3c.y |
. . . . . . 7
⊢ 𝑌 = (𝑢 ∈ (𝐹‘𝑊), 𝑣 ∈ (ω ↑𝑜
𝑊) ↦ (((ω
↑𝑜 𝑊) ·𝑜 𝑢) +𝑜 𝑣)) |
| 22 | | cnfcom3c.n |
. . . . . . 7
⊢ 𝑁 = ((𝑋 ∘ ◡𝑌) ∘ (𝑇‘dom 𝐺)) |
| 23 | 1, 2, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22 | cnfcom3 8601 |
. . . . . 6
⊢ ((𝐴 ∈ On ∧ 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏) → 𝑁:𝑏–1-1-onto→(ω ↑𝑜 𝑊)) |
| 24 | | f1of 6137 |
. . . . . . . . . 10
⊢ (𝑁:𝑏–1-1-onto→(ω ↑𝑜 𝑊) → 𝑁:𝑏⟶(ω ↑𝑜
𝑊)) |
| 25 | 23, 24 | syl 17 |
. . . . . . . . 9
⊢ ((𝐴 ∈ On ∧ 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏) → 𝑁:𝑏⟶(ω ↑𝑜
𝑊)) |
| 26 | | vex 3203 |
. . . . . . . . 9
⊢ 𝑏 ∈ V |
| 27 | | fex 6490 |
. . . . . . . . 9
⊢ ((𝑁:𝑏⟶(ω ↑𝑜
𝑊) ∧ 𝑏 ∈ V) → 𝑁 ∈ V) |
| 28 | 25, 26, 27 | sylancl 694 |
. . . . . . . 8
⊢ ((𝐴 ∈ On ∧ 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏) → 𝑁 ∈ V) |
| 29 | | cnfcom3c.l |
. . . . . . . . 9
⊢ 𝐿 = (𝑏 ∈ (ω ↑𝑜
𝐴) ↦ 𝑁) |
| 30 | 29 | fvmpt2 6291 |
. . . . . . . 8
⊢ ((𝑏 ∈ (ω
↑𝑜 𝐴) ∧ 𝑁 ∈ V) → (𝐿‘𝑏) = 𝑁) |
| 31 | 10, 28, 30 | syl2anc 693 |
. . . . . . 7
⊢ ((𝐴 ∈ On ∧ 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏) → (𝐿‘𝑏) = 𝑁) |
| 32 | | f1oeq1 6127 |
. . . . . . 7
⊢ ((𝐿‘𝑏) = 𝑁 → ((𝐿‘𝑏):𝑏–1-1-onto→(ω ↑𝑜 𝑊) ↔ 𝑁:𝑏–1-1-onto→(ω ↑𝑜 𝑊))) |
| 33 | 31, 32 | syl 17 |
. . . . . 6
⊢ ((𝐴 ∈ On ∧ 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏) → ((𝐿‘𝑏):𝑏–1-1-onto→(ω ↑𝑜 𝑊) ↔ 𝑁:𝑏–1-1-onto→(ω ↑𝑜 𝑊))) |
| 34 | 23, 33 | mpbird 247 |
. . . . 5
⊢ ((𝐴 ∈ On ∧ 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏) → (𝐿‘𝑏):𝑏–1-1-onto→(ω ↑𝑜 𝑊)) |
| 35 | | oveq2 6658 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → (ω ↑𝑜
𝑤) = (ω
↑𝑜 𝑊)) |
| 36 | | f1oeq3 6129 |
. . . . . . 7
⊢ ((ω
↑𝑜 𝑤) = (ω ↑𝑜 𝑊) → ((𝐿‘𝑏):𝑏–1-1-onto→(ω ↑𝑜 𝑤) ↔ (𝐿‘𝑏):𝑏–1-1-onto→(ω ↑𝑜 𝑊))) |
| 37 | 35, 36 | syl 17 |
. . . . . 6
⊢ (𝑤 = 𝑊 → ((𝐿‘𝑏):𝑏–1-1-onto→(ω ↑𝑜 𝑤) ↔ (𝐿‘𝑏):𝑏–1-1-onto→(ω ↑𝑜 𝑊))) |
| 38 | 37 | rspcev 3309 |
. . . . 5
⊢ ((𝑊 ∈ (On ∖
1𝑜) ∧ (𝐿‘𝑏):𝑏–1-1-onto→(ω ↑𝑜 𝑊)) → ∃𝑤 ∈ (On ∖
1𝑜)(𝐿‘𝑏):𝑏–1-1-onto→(ω ↑𝑜 𝑤)) |
| 39 | 19, 34, 38 | syl2anc 693 |
. . . 4
⊢ ((𝐴 ∈ On ∧ 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏) → ∃𝑤 ∈ (On ∖
1𝑜)(𝐿‘𝑏):𝑏–1-1-onto→(ω ↑𝑜 𝑤)) |
| 40 | 39 | 3expia 1267 |
. . 3
⊢ ((𝐴 ∈ On ∧ 𝑏 ∈ 𝐴) → (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖
1𝑜)(𝐿‘𝑏):𝑏–1-1-onto→(ω ↑𝑜 𝑤))) |
| 41 | 40 | ralrimiva 2966 |
. 2
⊢ (𝐴 ∈ On → ∀𝑏 ∈ 𝐴 (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖
1𝑜)(𝐿‘𝑏):𝑏–1-1-onto→(ω ↑𝑜 𝑤))) |
| 42 | | ovex 6678 |
. . . . 5
⊢ (ω
↑𝑜 𝐴) ∈ V |
| 43 | 42 | mptex 6486 |
. . . 4
⊢ (𝑏 ∈ (ω
↑𝑜 𝐴) ↦ 𝑁) ∈ V |
| 44 | 29, 43 | eqeltri 2697 |
. . 3
⊢ 𝐿 ∈ V |
| 45 | | nfmpt1 4747 |
. . . . . 6
⊢
Ⅎ𝑏(𝑏 ∈ (ω ↑𝑜
𝐴) ↦ 𝑁) |
| 46 | 29, 45 | nfcxfr 2762 |
. . . . 5
⊢
Ⅎ𝑏𝐿 |
| 47 | 46 | nfeq2 2780 |
. . . 4
⊢
Ⅎ𝑏 𝑔 = 𝐿 |
| 48 | | fveq1 6190 |
. . . . . . 7
⊢ (𝑔 = 𝐿 → (𝑔‘𝑏) = (𝐿‘𝑏)) |
| 49 | | f1oeq1 6127 |
. . . . . . 7
⊢ ((𝑔‘𝑏) = (𝐿‘𝑏) → ((𝑔‘𝑏):𝑏–1-1-onto→(ω ↑𝑜 𝑤) ↔ (𝐿‘𝑏):𝑏–1-1-onto→(ω ↑𝑜 𝑤))) |
| 50 | 48, 49 | syl 17 |
. . . . . 6
⊢ (𝑔 = 𝐿 → ((𝑔‘𝑏):𝑏–1-1-onto→(ω ↑𝑜 𝑤) ↔ (𝐿‘𝑏):𝑏–1-1-onto→(ω ↑𝑜 𝑤))) |
| 51 | 50 | rexbidv 3052 |
. . . . 5
⊢ (𝑔 = 𝐿 → (∃𝑤 ∈ (On ∖
1𝑜)(𝑔‘𝑏):𝑏–1-1-onto→(ω ↑𝑜 𝑤) ↔ ∃𝑤 ∈ (On ∖
1𝑜)(𝐿‘𝑏):𝑏–1-1-onto→(ω ↑𝑜 𝑤))) |
| 52 | 51 | imbi2d 330 |
. . . 4
⊢ (𝑔 = 𝐿 → ((ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖
1𝑜)(𝑔‘𝑏):𝑏–1-1-onto→(ω ↑𝑜 𝑤)) ↔ (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖
1𝑜)(𝐿‘𝑏):𝑏–1-1-onto→(ω ↑𝑜 𝑤)))) |
| 53 | 47, 52 | ralbid 2983 |
. . 3
⊢ (𝑔 = 𝐿 → (∀𝑏 ∈ 𝐴 (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖
1𝑜)(𝑔‘𝑏):𝑏–1-1-onto→(ω ↑𝑜 𝑤)) ↔ ∀𝑏 ∈ 𝐴 (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖
1𝑜)(𝐿‘𝑏):𝑏–1-1-onto→(ω ↑𝑜 𝑤)))) |
| 54 | 44, 53 | spcev 3300 |
. 2
⊢
(∀𝑏 ∈
𝐴 (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖
1𝑜)(𝐿‘𝑏):𝑏–1-1-onto→(ω ↑𝑜 𝑤)) → ∃𝑔∀𝑏 ∈ 𝐴 (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖
1𝑜)(𝑔‘𝑏):𝑏–1-1-onto→(ω ↑𝑜 𝑤))) |
| 55 | 41, 54 | syl 17 |
1
⊢ (𝐴 ∈ On → ∃𝑔∀𝑏 ∈ 𝐴 (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖
1𝑜)(𝑔‘𝑏):𝑏–1-1-onto→(ω ↑𝑜 𝑤))) |