MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ondif2 Structured version   Visualization version   Unicode version

Theorem ondif2 7582
Description: Two ways to say that  A is an ordinal greater than one. (Contributed by Mario Carneiro, 21-May-2015.)
Assertion
Ref Expression
ondif2  |-  ( A  e.  ( On  \  2o )  <->  ( A  e.  On  /\  1o  e.  A ) )

Proof of Theorem ondif2
StepHypRef Expression
1 eldif 3584 . 2  |-  ( A  e.  ( On  \  2o )  <->  ( A  e.  On  /\  -.  A  e.  2o ) )
2 1on 7567 . . . . 5  |-  1o  e.  On
3 ontri1 5757 . . . . . 6  |-  ( ( A  e.  On  /\  1o  e.  On )  -> 
( A  C_  1o  <->  -.  1o  e.  A ) )
4 onsssuc 5813 . . . . . . 7  |-  ( ( A  e.  On  /\  1o  e.  On )  -> 
( A  C_  1o  <->  A  e.  suc  1o ) )
5 df-2o 7561 . . . . . . . 8  |-  2o  =  suc  1o
65eleq2i 2693 . . . . . . 7  |-  ( A  e.  2o  <->  A  e.  suc  1o )
74, 6syl6bbr 278 . . . . . 6  |-  ( ( A  e.  On  /\  1o  e.  On )  -> 
( A  C_  1o  <->  A  e.  2o ) )
83, 7bitr3d 270 . . . . 5  |-  ( ( A  e.  On  /\  1o  e.  On )  -> 
( -.  1o  e.  A 
<->  A  e.  2o ) )
92, 8mpan2 707 . . . 4  |-  ( A  e.  On  ->  ( -.  1o  e.  A  <->  A  e.  2o ) )
109con1bid 345 . . 3  |-  ( A  e.  On  ->  ( -.  A  e.  2o  <->  1o  e.  A ) )
1110pm5.32i 669 . 2  |-  ( ( A  e.  On  /\  -.  A  e.  2o ) 
<->  ( A  e.  On  /\  1o  e.  A ) )
121, 11bitri 264 1  |-  ( A  e.  ( On  \  2o )  <->  ( A  e.  On  /\  1o  e.  A ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 196    /\ wa 384    e. wcel 1990    \ cdif 3571    C_ wss 3574   Oncon0 5723   suc csuc 5725   1oc1o 7553   2oc2o 7554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726  df-on 5727  df-suc 5729  df-1o 7560  df-2o 7561
This theorem is referenced by:  dif20el  7585  oeordi  7667  oewordi  7671  oaabs2  7725  omabs  7727  cnfcom3clem  8602  infxpenc2lem1  8842
  Copyright terms: Public domain W3C validator