| Step | Hyp | Ref
| Expression |
| 1 | | infxpenc2.2 |
. . . 4
⊢ (𝜑 → ∀𝑏 ∈ 𝐴 (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖
1𝑜)(𝑛‘𝑏):𝑏–1-1-onto→(ω ↑𝑜 𝑤))) |
| 2 | 1 | r19.21bi 2932 |
. . 3
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐴) → (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖
1𝑜)(𝑛‘𝑏):𝑏–1-1-onto→(ω ↑𝑜 𝑤))) |
| 3 | 2 | impr 649 |
. 2
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏)) → ∃𝑤 ∈ (On ∖
1𝑜)(𝑛‘𝑏):𝑏–1-1-onto→(ω ↑𝑜 𝑤)) |
| 4 | | simpr 477 |
. . 3
⊢ (((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1𝑜)
∧ (𝑛‘𝑏):𝑏–1-1-onto→(ω ↑𝑜 𝑤))) → (𝑤 ∈ (On ∖ 1𝑜)
∧ (𝑛‘𝑏):𝑏–1-1-onto→(ω ↑𝑜 𝑤))) |
| 5 | | infxpenc2.3 |
. . . . . 6
⊢ 𝑊 = (◡(𝑥 ∈ (On ∖ 1𝑜)
↦ (ω ↑𝑜 𝑥))‘ran (𝑛‘𝑏)) |
| 6 | | oveq2 6658 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑤 → (ω ↑𝑜
𝑥) = (ω
↑𝑜 𝑤)) |
| 7 | | eqid 2622 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (On ∖
1𝑜) ↦ (ω ↑𝑜 𝑥)) = (𝑥 ∈ (On ∖ 1𝑜)
↦ (ω ↑𝑜 𝑥)) |
| 8 | | ovex 6678 |
. . . . . . . . . 10
⊢ (ω
↑𝑜 𝑤) ∈ V |
| 9 | 6, 7, 8 | fvmpt 6282 |
. . . . . . . . 9
⊢ (𝑤 ∈ (On ∖
1𝑜) → ((𝑥 ∈ (On ∖ 1𝑜)
↦ (ω ↑𝑜 𝑥))‘𝑤) = (ω ↑𝑜 𝑤)) |
| 10 | 9 | ad2antrl 764 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1𝑜)
∧ (𝑛‘𝑏):𝑏–1-1-onto→(ω ↑𝑜 𝑤))) → ((𝑥 ∈ (On ∖ 1𝑜)
↦ (ω ↑𝑜 𝑥))‘𝑤) = (ω ↑𝑜 𝑤)) |
| 11 | | f1ofo 6144 |
. . . . . . . . . 10
⊢ ((𝑛‘𝑏):𝑏–1-1-onto→(ω ↑𝑜 𝑤) → (𝑛‘𝑏):𝑏–onto→(ω ↑𝑜 𝑤)) |
| 12 | 11 | ad2antll 765 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1𝑜)
∧ (𝑛‘𝑏):𝑏–1-1-onto→(ω ↑𝑜 𝑤))) → (𝑛‘𝑏):𝑏–onto→(ω ↑𝑜 𝑤)) |
| 13 | | forn 6118 |
. . . . . . . . 9
⊢ ((𝑛‘𝑏):𝑏–onto→(ω ↑𝑜 𝑤) → ran (𝑛‘𝑏) = (ω ↑𝑜 𝑤)) |
| 14 | 12, 13 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1𝑜)
∧ (𝑛‘𝑏):𝑏–1-1-onto→(ω ↑𝑜 𝑤))) → ran (𝑛‘𝑏) = (ω ↑𝑜 𝑤)) |
| 15 | 10, 14 | eqtr4d 2659 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1𝑜)
∧ (𝑛‘𝑏):𝑏–1-1-onto→(ω ↑𝑜 𝑤))) → ((𝑥 ∈ (On ∖ 1𝑜)
↦ (ω ↑𝑜 𝑥))‘𝑤) = ran (𝑛‘𝑏)) |
| 16 | | ovex 6678 |
. . . . . . . . . . 11
⊢ (ω
↑𝑜 𝑥) ∈ V |
| 17 | 16 | 2a1i 12 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1𝑜)
∧ (𝑛‘𝑏):𝑏–1-1-onto→(ω ↑𝑜 𝑤))) → (𝑥 ∈ (On ∖ 1𝑜)
→ (ω ↑𝑜 𝑥) ∈ V)) |
| 18 | | omelon 8543 |
. . . . . . . . . . . . . 14
⊢ ω
∈ On |
| 19 | | 1onn 7719 |
. . . . . . . . . . . . . 14
⊢
1𝑜 ∈ ω |
| 20 | | ondif2 7582 |
. . . . . . . . . . . . . 14
⊢ (ω
∈ (On ∖ 2𝑜) ↔ (ω ∈ On ∧
1𝑜 ∈ ω)) |
| 21 | 18, 19, 20 | mpbir2an 955 |
. . . . . . . . . . . . 13
⊢ ω
∈ (On ∖ 2𝑜) |
| 22 | 21 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1𝑜)
∧ (𝑛‘𝑏):𝑏–1-1-onto→(ω ↑𝑜 𝑤))) ∧ (𝑥 ∈ (On ∖ 1𝑜)
∧ 𝑦 ∈ (On ∖
1𝑜))) → ω ∈ (On ∖
2𝑜)) |
| 23 | | eldifi 3732 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ (On ∖
1𝑜) → 𝑥 ∈ On) |
| 24 | 23 | ad2antrl 764 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1𝑜)
∧ (𝑛‘𝑏):𝑏–1-1-onto→(ω ↑𝑜 𝑤))) ∧ (𝑥 ∈ (On ∖ 1𝑜)
∧ 𝑦 ∈ (On ∖
1𝑜))) → 𝑥 ∈ On) |
| 25 | | eldifi 3732 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (On ∖
1𝑜) → 𝑦 ∈ On) |
| 26 | 25 | ad2antll 765 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1𝑜)
∧ (𝑛‘𝑏):𝑏–1-1-onto→(ω ↑𝑜 𝑤))) ∧ (𝑥 ∈ (On ∖ 1𝑜)
∧ 𝑦 ∈ (On ∖
1𝑜))) → 𝑦 ∈ On) |
| 27 | | oecan 7669 |
. . . . . . . . . . . 12
⊢ ((ω
∈ (On ∖ 2𝑜) ∧ 𝑥 ∈ On ∧ 𝑦 ∈ On) → ((ω
↑𝑜 𝑥) = (ω ↑𝑜 𝑦) ↔ 𝑥 = 𝑦)) |
| 28 | 22, 24, 26, 27 | syl3anc 1326 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1𝑜)
∧ (𝑛‘𝑏):𝑏–1-1-onto→(ω ↑𝑜 𝑤))) ∧ (𝑥 ∈ (On ∖ 1𝑜)
∧ 𝑦 ∈ (On ∖
1𝑜))) → ((ω ↑𝑜 𝑥) = (ω
↑𝑜 𝑦) ↔ 𝑥 = 𝑦)) |
| 29 | 28 | ex 450 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1𝑜)
∧ (𝑛‘𝑏):𝑏–1-1-onto→(ω ↑𝑜 𝑤))) → ((𝑥 ∈ (On ∖ 1𝑜)
∧ 𝑦 ∈ (On ∖
1𝑜)) → ((ω ↑𝑜 𝑥) = (ω
↑𝑜 𝑦) ↔ 𝑥 = 𝑦))) |
| 30 | 17, 29 | dom2lem 7995 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1𝑜)
∧ (𝑛‘𝑏):𝑏–1-1-onto→(ω ↑𝑜 𝑤))) → (𝑥 ∈ (On ∖ 1𝑜)
↦ (ω ↑𝑜 𝑥)):(On ∖
1𝑜)–1-1→V) |
| 31 | | f1f1orn 6148 |
. . . . . . . . 9
⊢ ((𝑥 ∈ (On ∖
1𝑜) ↦ (ω ↑𝑜 𝑥)):(On ∖
1𝑜)–1-1→V
→ (𝑥 ∈ (On
∖ 1𝑜) ↦ (ω ↑𝑜
𝑥)):(On ∖
1𝑜)–1-1-onto→ran (𝑥 ∈ (On ∖ 1𝑜)
↦ (ω ↑𝑜 𝑥))) |
| 32 | 30, 31 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1𝑜)
∧ (𝑛‘𝑏):𝑏–1-1-onto→(ω ↑𝑜 𝑤))) → (𝑥 ∈ (On ∖ 1𝑜)
↦ (ω ↑𝑜 𝑥)):(On ∖
1𝑜)–1-1-onto→ran (𝑥 ∈ (On ∖ 1𝑜)
↦ (ω ↑𝑜 𝑥))) |
| 33 | | simprl 794 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1𝑜)
∧ (𝑛‘𝑏):𝑏–1-1-onto→(ω ↑𝑜 𝑤))) → 𝑤 ∈ (On ∖
1𝑜)) |
| 34 | | f1ocnvfv 6534 |
. . . . . . . 8
⊢ (((𝑥 ∈ (On ∖
1𝑜) ↦ (ω ↑𝑜 𝑥)):(On ∖
1𝑜)–1-1-onto→ran (𝑥 ∈ (On ∖ 1𝑜)
↦ (ω ↑𝑜 𝑥)) ∧ 𝑤 ∈ (On ∖ 1𝑜))
→ (((𝑥 ∈ (On
∖ 1𝑜) ↦ (ω ↑𝑜
𝑥))‘𝑤) = ran (𝑛‘𝑏) → (◡(𝑥 ∈ (On ∖ 1𝑜)
↦ (ω ↑𝑜 𝑥))‘ran (𝑛‘𝑏)) = 𝑤)) |
| 35 | 32, 33, 34 | syl2anc 693 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1𝑜)
∧ (𝑛‘𝑏):𝑏–1-1-onto→(ω ↑𝑜 𝑤))) → (((𝑥 ∈ (On ∖ 1𝑜)
↦ (ω ↑𝑜 𝑥))‘𝑤) = ran (𝑛‘𝑏) → (◡(𝑥 ∈ (On ∖ 1𝑜)
↦ (ω ↑𝑜 𝑥))‘ran (𝑛‘𝑏)) = 𝑤)) |
| 36 | 15, 35 | mpd 15 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1𝑜)
∧ (𝑛‘𝑏):𝑏–1-1-onto→(ω ↑𝑜 𝑤))) → (◡(𝑥 ∈ (On ∖ 1𝑜)
↦ (ω ↑𝑜 𝑥))‘ran (𝑛‘𝑏)) = 𝑤) |
| 37 | 5, 36 | syl5eq 2668 |
. . . . 5
⊢ (((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1𝑜)
∧ (𝑛‘𝑏):𝑏–1-1-onto→(ω ↑𝑜 𝑤))) → 𝑊 = 𝑤) |
| 38 | 37 | eleq1d 2686 |
. . . 4
⊢ (((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1𝑜)
∧ (𝑛‘𝑏):𝑏–1-1-onto→(ω ↑𝑜 𝑤))) → (𝑊 ∈ (On ∖ 1𝑜)
↔ 𝑤 ∈ (On ∖
1𝑜))) |
| 39 | 37 | oveq2d 6666 |
. . . . 5
⊢ (((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1𝑜)
∧ (𝑛‘𝑏):𝑏–1-1-onto→(ω ↑𝑜 𝑤))) → (ω
↑𝑜 𝑊) = (ω ↑𝑜
𝑤)) |
| 40 | | f1oeq3 6129 |
. . . . 5
⊢ ((ω
↑𝑜 𝑊) = (ω ↑𝑜
𝑤) → ((𝑛‘𝑏):𝑏–1-1-onto→(ω ↑𝑜 𝑊) ↔ (𝑛‘𝑏):𝑏–1-1-onto→(ω ↑𝑜 𝑤))) |
| 41 | 39, 40 | syl 17 |
. . . 4
⊢ (((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1𝑜)
∧ (𝑛‘𝑏):𝑏–1-1-onto→(ω ↑𝑜 𝑤))) → ((𝑛‘𝑏):𝑏–1-1-onto→(ω ↑𝑜 𝑊) ↔ (𝑛‘𝑏):𝑏–1-1-onto→(ω ↑𝑜 𝑤))) |
| 42 | 38, 41 | anbi12d 747 |
. . 3
⊢ (((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1𝑜)
∧ (𝑛‘𝑏):𝑏–1-1-onto→(ω ↑𝑜 𝑤))) → ((𝑊 ∈ (On ∖ 1𝑜)
∧ (𝑛‘𝑏):𝑏–1-1-onto→(ω ↑𝑜 𝑊)) ↔ (𝑤 ∈ (On ∖ 1𝑜)
∧ (𝑛‘𝑏):𝑏–1-1-onto→(ω ↑𝑜 𝑤)))) |
| 43 | 4, 42 | mpbird 247 |
. 2
⊢ (((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1𝑜)
∧ (𝑛‘𝑏):𝑏–1-1-onto→(ω ↑𝑜 𝑤))) → (𝑊 ∈ (On ∖ 1𝑜)
∧ (𝑛‘𝑏):𝑏–1-1-onto→(ω ↑𝑜 𝑊))) |
| 44 | 3, 43 | rexlimddv 3035 |
1
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏)) → (𝑊 ∈ (On ∖ 1𝑜)
∧ (𝑛‘𝑏):𝑏–1-1-onto→(ω ↑𝑜 𝑊))) |