MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infxpenc2lem1 Structured version   Visualization version   GIF version

Theorem infxpenc2lem1 8842
Description: Lemma for infxpenc2 8845. (Contributed by Mario Carneiro, 30-May-2015.)
Hypotheses
Ref Expression
infxpenc2.1 (𝜑𝐴 ∈ On)
infxpenc2.2 (𝜑 → ∀𝑏𝐴 (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1𝑜)(𝑛𝑏):𝑏1-1-onto→(ω ↑𝑜 𝑤)))
infxpenc2.3 𝑊 = ((𝑥 ∈ (On ∖ 1𝑜) ↦ (ω ↑𝑜 𝑥))‘ran (𝑛𝑏))
Assertion
Ref Expression
infxpenc2lem1 ((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) → (𝑊 ∈ (On ∖ 1𝑜) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑𝑜 𝑊)))
Distinct variable groups:   𝑛,𝑏,𝑤,𝑥,𝐴   𝜑,𝑏,𝑤,𝑥   𝑤,𝑊,𝑥
Allowed substitution hints:   𝜑(𝑛)   𝑊(𝑛,𝑏)

Proof of Theorem infxpenc2lem1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 infxpenc2.2 . . . 4 (𝜑 → ∀𝑏𝐴 (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1𝑜)(𝑛𝑏):𝑏1-1-onto→(ω ↑𝑜 𝑤)))
21r19.21bi 2932 . . 3 ((𝜑𝑏𝐴) → (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1𝑜)(𝑛𝑏):𝑏1-1-onto→(ω ↑𝑜 𝑤)))
32impr 649 . 2 ((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) → ∃𝑤 ∈ (On ∖ 1𝑜)(𝑛𝑏):𝑏1-1-onto→(ω ↑𝑜 𝑤))
4 simpr 477 . . 3 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1𝑜) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑𝑜 𝑤))) → (𝑤 ∈ (On ∖ 1𝑜) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑𝑜 𝑤)))
5 infxpenc2.3 . . . . . 6 𝑊 = ((𝑥 ∈ (On ∖ 1𝑜) ↦ (ω ↑𝑜 𝑥))‘ran (𝑛𝑏))
6 oveq2 6658 . . . . . . . . . 10 (𝑥 = 𝑤 → (ω ↑𝑜 𝑥) = (ω ↑𝑜 𝑤))
7 eqid 2622 . . . . . . . . . 10 (𝑥 ∈ (On ∖ 1𝑜) ↦ (ω ↑𝑜 𝑥)) = (𝑥 ∈ (On ∖ 1𝑜) ↦ (ω ↑𝑜 𝑥))
8 ovex 6678 . . . . . . . . . 10 (ω ↑𝑜 𝑤) ∈ V
96, 7, 8fvmpt 6282 . . . . . . . . 9 (𝑤 ∈ (On ∖ 1𝑜) → ((𝑥 ∈ (On ∖ 1𝑜) ↦ (ω ↑𝑜 𝑥))‘𝑤) = (ω ↑𝑜 𝑤))
109ad2antrl 764 . . . . . . . 8 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1𝑜) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑𝑜 𝑤))) → ((𝑥 ∈ (On ∖ 1𝑜) ↦ (ω ↑𝑜 𝑥))‘𝑤) = (ω ↑𝑜 𝑤))
11 f1ofo 6144 . . . . . . . . . 10 ((𝑛𝑏):𝑏1-1-onto→(ω ↑𝑜 𝑤) → (𝑛𝑏):𝑏onto→(ω ↑𝑜 𝑤))
1211ad2antll 765 . . . . . . . . 9 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1𝑜) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑𝑜 𝑤))) → (𝑛𝑏):𝑏onto→(ω ↑𝑜 𝑤))
13 forn 6118 . . . . . . . . 9 ((𝑛𝑏):𝑏onto→(ω ↑𝑜 𝑤) → ran (𝑛𝑏) = (ω ↑𝑜 𝑤))
1412, 13syl 17 . . . . . . . 8 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1𝑜) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑𝑜 𝑤))) → ran (𝑛𝑏) = (ω ↑𝑜 𝑤))
1510, 14eqtr4d 2659 . . . . . . 7 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1𝑜) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑𝑜 𝑤))) → ((𝑥 ∈ (On ∖ 1𝑜) ↦ (ω ↑𝑜 𝑥))‘𝑤) = ran (𝑛𝑏))
16 ovex 6678 . . . . . . . . . . 11 (ω ↑𝑜 𝑥) ∈ V
17162a1i 12 . . . . . . . . . 10 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1𝑜) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑𝑜 𝑤))) → (𝑥 ∈ (On ∖ 1𝑜) → (ω ↑𝑜 𝑥) ∈ V))
18 omelon 8543 . . . . . . . . . . . . . 14 ω ∈ On
19 1onn 7719 . . . . . . . . . . . . . 14 1𝑜 ∈ ω
20 ondif2 7582 . . . . . . . . . . . . . 14 (ω ∈ (On ∖ 2𝑜) ↔ (ω ∈ On ∧ 1𝑜 ∈ ω))
2118, 19, 20mpbir2an 955 . . . . . . . . . . . . 13 ω ∈ (On ∖ 2𝑜)
2221a1i 11 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1𝑜) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑𝑜 𝑤))) ∧ (𝑥 ∈ (On ∖ 1𝑜) ∧ 𝑦 ∈ (On ∖ 1𝑜))) → ω ∈ (On ∖ 2𝑜))
23 eldifi 3732 . . . . . . . . . . . . 13 (𝑥 ∈ (On ∖ 1𝑜) → 𝑥 ∈ On)
2423ad2antrl 764 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1𝑜) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑𝑜 𝑤))) ∧ (𝑥 ∈ (On ∖ 1𝑜) ∧ 𝑦 ∈ (On ∖ 1𝑜))) → 𝑥 ∈ On)
25 eldifi 3732 . . . . . . . . . . . . 13 (𝑦 ∈ (On ∖ 1𝑜) → 𝑦 ∈ On)
2625ad2antll 765 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1𝑜) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑𝑜 𝑤))) ∧ (𝑥 ∈ (On ∖ 1𝑜) ∧ 𝑦 ∈ (On ∖ 1𝑜))) → 𝑦 ∈ On)
27 oecan 7669 . . . . . . . . . . . 12 ((ω ∈ (On ∖ 2𝑜) ∧ 𝑥 ∈ On ∧ 𝑦 ∈ On) → ((ω ↑𝑜 𝑥) = (ω ↑𝑜 𝑦) ↔ 𝑥 = 𝑦))
2822, 24, 26, 27syl3anc 1326 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1𝑜) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑𝑜 𝑤))) ∧ (𝑥 ∈ (On ∖ 1𝑜) ∧ 𝑦 ∈ (On ∖ 1𝑜))) → ((ω ↑𝑜 𝑥) = (ω ↑𝑜 𝑦) ↔ 𝑥 = 𝑦))
2928ex 450 . . . . . . . . . 10 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1𝑜) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑𝑜 𝑤))) → ((𝑥 ∈ (On ∖ 1𝑜) ∧ 𝑦 ∈ (On ∖ 1𝑜)) → ((ω ↑𝑜 𝑥) = (ω ↑𝑜 𝑦) ↔ 𝑥 = 𝑦)))
3017, 29dom2lem 7995 . . . . . . . . 9 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1𝑜) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑𝑜 𝑤))) → (𝑥 ∈ (On ∖ 1𝑜) ↦ (ω ↑𝑜 𝑥)):(On ∖ 1𝑜)–1-1→V)
31 f1f1orn 6148 . . . . . . . . 9 ((𝑥 ∈ (On ∖ 1𝑜) ↦ (ω ↑𝑜 𝑥)):(On ∖ 1𝑜)–1-1→V → (𝑥 ∈ (On ∖ 1𝑜) ↦ (ω ↑𝑜 𝑥)):(On ∖ 1𝑜)–1-1-onto→ran (𝑥 ∈ (On ∖ 1𝑜) ↦ (ω ↑𝑜 𝑥)))
3230, 31syl 17 . . . . . . . 8 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1𝑜) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑𝑜 𝑤))) → (𝑥 ∈ (On ∖ 1𝑜) ↦ (ω ↑𝑜 𝑥)):(On ∖ 1𝑜)–1-1-onto→ran (𝑥 ∈ (On ∖ 1𝑜) ↦ (ω ↑𝑜 𝑥)))
33 simprl 794 . . . . . . . 8 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1𝑜) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑𝑜 𝑤))) → 𝑤 ∈ (On ∖ 1𝑜))
34 f1ocnvfv 6534 . . . . . . . 8 (((𝑥 ∈ (On ∖ 1𝑜) ↦ (ω ↑𝑜 𝑥)):(On ∖ 1𝑜)–1-1-onto→ran (𝑥 ∈ (On ∖ 1𝑜) ↦ (ω ↑𝑜 𝑥)) ∧ 𝑤 ∈ (On ∖ 1𝑜)) → (((𝑥 ∈ (On ∖ 1𝑜) ↦ (ω ↑𝑜 𝑥))‘𝑤) = ran (𝑛𝑏) → ((𝑥 ∈ (On ∖ 1𝑜) ↦ (ω ↑𝑜 𝑥))‘ran (𝑛𝑏)) = 𝑤))
3532, 33, 34syl2anc 693 . . . . . . 7 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1𝑜) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑𝑜 𝑤))) → (((𝑥 ∈ (On ∖ 1𝑜) ↦ (ω ↑𝑜 𝑥))‘𝑤) = ran (𝑛𝑏) → ((𝑥 ∈ (On ∖ 1𝑜) ↦ (ω ↑𝑜 𝑥))‘ran (𝑛𝑏)) = 𝑤))
3615, 35mpd 15 . . . . . 6 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1𝑜) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑𝑜 𝑤))) → ((𝑥 ∈ (On ∖ 1𝑜) ↦ (ω ↑𝑜 𝑥))‘ran (𝑛𝑏)) = 𝑤)
375, 36syl5eq 2668 . . . . 5 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1𝑜) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑𝑜 𝑤))) → 𝑊 = 𝑤)
3837eleq1d 2686 . . . 4 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1𝑜) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑𝑜 𝑤))) → (𝑊 ∈ (On ∖ 1𝑜) ↔ 𝑤 ∈ (On ∖ 1𝑜)))
3937oveq2d 6666 . . . . 5 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1𝑜) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑𝑜 𝑤))) → (ω ↑𝑜 𝑊) = (ω ↑𝑜 𝑤))
40 f1oeq3 6129 . . . . 5 ((ω ↑𝑜 𝑊) = (ω ↑𝑜 𝑤) → ((𝑛𝑏):𝑏1-1-onto→(ω ↑𝑜 𝑊) ↔ (𝑛𝑏):𝑏1-1-onto→(ω ↑𝑜 𝑤)))
4139, 40syl 17 . . . 4 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1𝑜) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑𝑜 𝑤))) → ((𝑛𝑏):𝑏1-1-onto→(ω ↑𝑜 𝑊) ↔ (𝑛𝑏):𝑏1-1-onto→(ω ↑𝑜 𝑤)))
4238, 41anbi12d 747 . . 3 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1𝑜) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑𝑜 𝑤))) → ((𝑊 ∈ (On ∖ 1𝑜) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑𝑜 𝑊)) ↔ (𝑤 ∈ (On ∖ 1𝑜) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑𝑜 𝑤))))
434, 42mpbird 247 . 2 (((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) ∧ (𝑤 ∈ (On ∖ 1𝑜) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑𝑜 𝑤))) → (𝑊 ∈ (On ∖ 1𝑜) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑𝑜 𝑊)))
443, 43rexlimddv 3035 1 ((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) → (𝑊 ∈ (On ∖ 1𝑜) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑𝑜 𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  wrex 2913  Vcvv 3200  cdif 3571  wss 3574  cmpt 4729  ccnv 5113  ran crn 5115  Oncon0 5723  1-1wf1 5885  ontowfo 5886  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  ωcom 7065  1𝑜c1o 7553  2𝑜c2o 7554  𝑜 coe 7559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-oexp 7566
This theorem is referenced by:  infxpenc2lem2  8843
  Copyright terms: Public domain W3C validator