![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opprmulfval | Structured version Visualization version GIF version |
Description: Value of the multiplication operation of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.) |
Ref | Expression |
---|---|
opprval.1 | ⊢ 𝐵 = (Base‘𝑅) |
opprval.2 | ⊢ · = (.r‘𝑅) |
opprval.3 | ⊢ 𝑂 = (oppr‘𝑅) |
opprmulfval.4 | ⊢ ∙ = (.r‘𝑂) |
Ref | Expression |
---|---|
opprmulfval | ⊢ ∙ = tpos · |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opprmulfval.4 | . 2 ⊢ ∙ = (.r‘𝑂) | |
2 | opprval.2 | . . . . . . 7 ⊢ · = (.r‘𝑅) | |
3 | fvex 6201 | . . . . . . 7 ⊢ (.r‘𝑅) ∈ V | |
4 | 2, 3 | eqeltri 2697 | . . . . . 6 ⊢ · ∈ V |
5 | 4 | tposex 7386 | . . . . 5 ⊢ tpos · ∈ V |
6 | mulrid 15997 | . . . . . 6 ⊢ .r = Slot (.r‘ndx) | |
7 | 6 | setsid 15914 | . . . . 5 ⊢ ((𝑅 ∈ V ∧ tpos · ∈ V) → tpos · = (.r‘(𝑅 sSet 〈(.r‘ndx), tpos · 〉))) |
8 | 5, 7 | mpan2 707 | . . . 4 ⊢ (𝑅 ∈ V → tpos · = (.r‘(𝑅 sSet 〈(.r‘ndx), tpos · 〉))) |
9 | opprval.1 | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
10 | opprval.3 | . . . . . 6 ⊢ 𝑂 = (oppr‘𝑅) | |
11 | 9, 2, 10 | opprval 18624 | . . . . 5 ⊢ 𝑂 = (𝑅 sSet 〈(.r‘ndx), tpos · 〉) |
12 | 11 | fveq2i 6194 | . . . 4 ⊢ (.r‘𝑂) = (.r‘(𝑅 sSet 〈(.r‘ndx), tpos · 〉)) |
13 | 8, 12 | syl6reqr 2675 | . . 3 ⊢ (𝑅 ∈ V → (.r‘𝑂) = tpos · ) |
14 | tpos0 7382 | . . . . 5 ⊢ tpos ∅ = ∅ | |
15 | 6 | str0 15911 | . . . . 5 ⊢ ∅ = (.r‘∅) |
16 | 14, 15 | eqtr2i 2645 | . . . 4 ⊢ (.r‘∅) = tpos ∅ |
17 | fvprc 6185 | . . . . . 6 ⊢ (¬ 𝑅 ∈ V → (oppr‘𝑅) = ∅) | |
18 | 10, 17 | syl5eq 2668 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → 𝑂 = ∅) |
19 | 18 | fveq2d 6195 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (.r‘𝑂) = (.r‘∅)) |
20 | fvprc 6185 | . . . . . 6 ⊢ (¬ 𝑅 ∈ V → (.r‘𝑅) = ∅) | |
21 | 2, 20 | syl5eq 2668 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → · = ∅) |
22 | 21 | tposeqd 7355 | . . . 4 ⊢ (¬ 𝑅 ∈ V → tpos · = tpos ∅) |
23 | 16, 19, 22 | 3eqtr4a 2682 | . . 3 ⊢ (¬ 𝑅 ∈ V → (.r‘𝑂) = tpos · ) |
24 | 13, 23 | pm2.61i 176 | . 2 ⊢ (.r‘𝑂) = tpos · |
25 | 1, 24 | eqtri 2644 | 1 ⊢ ∙ = tpos · |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1483 ∈ wcel 1990 Vcvv 3200 ∅c0 3915 〈cop 4183 ‘cfv 5888 (class class class)co 6650 tpos ctpos 7351 ndxcnx 15854 sSet csts 15855 Basecbs 15857 .rcmulr 15942 opprcoppr 18622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-i2m1 10004 ax-1ne0 10005 ax-rrecex 10008 ax-cnre 10009 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-tpos 7352 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-nn 11021 df-2 11079 df-3 11080 df-ndx 15860 df-slot 15861 df-sets 15864 df-mulr 15955 df-oppr 18623 |
This theorem is referenced by: opprmul 18626 |
Copyright terms: Public domain | W3C validator |