MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opprmulfval Structured version   Visualization version   Unicode version

Theorem opprmulfval 18625
Description: Value of the multiplication operation of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.)
Hypotheses
Ref Expression
opprval.1  |-  B  =  ( Base `  R
)
opprval.2  |-  .x.  =  ( .r `  R )
opprval.3  |-  O  =  (oppr
`  R )
opprmulfval.4  |-  .xb  =  ( .r `  O )
Assertion
Ref Expression
opprmulfval  |-  .xb  = tpos  .x.

Proof of Theorem opprmulfval
StepHypRef Expression
1 opprmulfval.4 . 2  |-  .xb  =  ( .r `  O )
2 opprval.2 . . . . . . 7  |-  .x.  =  ( .r `  R )
3 fvex 6201 . . . . . . 7  |-  ( .r
`  R )  e. 
_V
42, 3eqeltri 2697 . . . . . 6  |-  .x.  e.  _V
54tposex 7386 . . . . 5  |- tpos  .x.  e.  _V
6 mulrid 15997 . . . . . 6  |-  .r  = Slot  ( .r `  ndx )
76setsid 15914 . . . . 5  |-  ( ( R  e.  _V  /\ tpos  .x. 
e.  _V )  -> tpos  .x.  =  ( .r `  ( R sSet  <. ( .r `  ndx ) , tpos  .x.  >. )
) )
85, 7mpan2 707 . . . 4  |-  ( R  e.  _V  -> tpos  .x.  =  ( .r `  ( R sSet  <. ( .r `  ndx ) , tpos  .x.  >. )
) )
9 opprval.1 . . . . . 6  |-  B  =  ( Base `  R
)
10 opprval.3 . . . . . 6  |-  O  =  (oppr
`  R )
119, 2, 10opprval 18624 . . . . 5  |-  O  =  ( R sSet  <. ( .r `  ndx ) , tpos  .x.  >. )
1211fveq2i 6194 . . . 4  |-  ( .r
`  O )  =  ( .r `  ( R sSet  <. ( .r `  ndx ) , tpos  .x.  >. )
)
138, 12syl6reqr 2675 . . 3  |-  ( R  e.  _V  ->  ( .r `  O )  = tpos  .x.  )
14 tpos0 7382 . . . . 5  |- tpos  (/)  =  (/)
156str0 15911 . . . . 5  |-  (/)  =  ( .r `  (/) )
1614, 15eqtr2i 2645 . . . 4  |-  ( .r
`  (/) )  = tpos  (/)
17 fvprc 6185 . . . . . 6  |-  ( -.  R  e.  _V  ->  (oppr `  R )  =  (/) )
1810, 17syl5eq 2668 . . . . 5  |-  ( -.  R  e.  _V  ->  O  =  (/) )
1918fveq2d 6195 . . . 4  |-  ( -.  R  e.  _V  ->  ( .r `  O )  =  ( .r `  (/) ) )
20 fvprc 6185 . . . . . 6  |-  ( -.  R  e.  _V  ->  ( .r `  R )  =  (/) )
212, 20syl5eq 2668 . . . . 5  |-  ( -.  R  e.  _V  ->  .x.  =  (/) )
2221tposeqd 7355 . . . 4  |-  ( -.  R  e.  _V  -> tpos  .x.  = tpos 
(/) )
2316, 19, 223eqtr4a 2682 . . 3  |-  ( -.  R  e.  _V  ->  ( .r `  O )  = tpos  .x.  )
2413, 23pm2.61i 176 . 2  |-  ( .r
`  O )  = tpos  .x.
251, 24eqtri 2644 1  |-  .xb  = tpos  .x.
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    = wceq 1483    e. wcel 1990   _Vcvv 3200   (/)c0 3915   <.cop 4183   ` cfv 5888  (class class class)co 6650  tpos ctpos 7351   ndxcnx 15854   sSet csts 15855   Basecbs 15857   .rcmulr 15942  opprcoppr 18622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-i2m1 10004  ax-1ne0 10005  ax-rrecex 10008  ax-cnre 10009
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-nn 11021  df-2 11079  df-3 11080  df-ndx 15860  df-slot 15861  df-sets 15864  df-mulr 15955  df-oppr 18623
This theorem is referenced by:  opprmul  18626
  Copyright terms: Public domain W3C validator