MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oen0 Structured version   Visualization version   GIF version

Theorem oen0 7666
Description: Ordinal exponentiation with a nonzero mantissa is nonzero. Proposition 8.32 of [TakeutiZaring] p. 67. (Contributed by NM, 4-Jan-2005.)
Assertion
Ref Expression
oen0 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → ∅ ∈ (𝐴𝑜 𝐵))

Proof of Theorem oen0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6658 . . . . . 6 (𝑥 = ∅ → (𝐴𝑜 𝑥) = (𝐴𝑜 ∅))
21eleq2d 2687 . . . . 5 (𝑥 = ∅ → (∅ ∈ (𝐴𝑜 𝑥) ↔ ∅ ∈ (𝐴𝑜 ∅)))
3 oveq2 6658 . . . . . 6 (𝑥 = 𝑦 → (𝐴𝑜 𝑥) = (𝐴𝑜 𝑦))
43eleq2d 2687 . . . . 5 (𝑥 = 𝑦 → (∅ ∈ (𝐴𝑜 𝑥) ↔ ∅ ∈ (𝐴𝑜 𝑦)))
5 oveq2 6658 . . . . . 6 (𝑥 = suc 𝑦 → (𝐴𝑜 𝑥) = (𝐴𝑜 suc 𝑦))
65eleq2d 2687 . . . . 5 (𝑥 = suc 𝑦 → (∅ ∈ (𝐴𝑜 𝑥) ↔ ∅ ∈ (𝐴𝑜 suc 𝑦)))
7 oveq2 6658 . . . . . 6 (𝑥 = 𝐵 → (𝐴𝑜 𝑥) = (𝐴𝑜 𝐵))
87eleq2d 2687 . . . . 5 (𝑥 = 𝐵 → (∅ ∈ (𝐴𝑜 𝑥) ↔ ∅ ∈ (𝐴𝑜 𝐵)))
9 0lt1o 7584 . . . . . . 7 ∅ ∈ 1𝑜
10 oe0 7602 . . . . . . 7 (𝐴 ∈ On → (𝐴𝑜 ∅) = 1𝑜)
119, 10syl5eleqr 2708 . . . . . 6 (𝐴 ∈ On → ∅ ∈ (𝐴𝑜 ∅))
1211adantr 481 . . . . 5 ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → ∅ ∈ (𝐴𝑜 ∅))
13 simpl 473 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → 𝐴 ∈ On)
14 oecl 7617 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴𝑜 𝑦) ∈ On)
1513, 14jca 554 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ∈ On ∧ (𝐴𝑜 𝑦) ∈ On))
16 omordi 7646 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ (𝐴𝑜 𝑦) ∈ On) ∧ ∅ ∈ (𝐴𝑜 𝑦)) → (∅ ∈ 𝐴 → ((𝐴𝑜 𝑦) ·𝑜 ∅) ∈ ((𝐴𝑜 𝑦) ·𝑜 𝐴)))
17 om0 7597 . . . . . . . . . . . . . 14 ((𝐴𝑜 𝑦) ∈ On → ((𝐴𝑜 𝑦) ·𝑜 ∅) = ∅)
1817eleq1d 2686 . . . . . . . . . . . . 13 ((𝐴𝑜 𝑦) ∈ On → (((𝐴𝑜 𝑦) ·𝑜 ∅) ∈ ((𝐴𝑜 𝑦) ·𝑜 𝐴) ↔ ∅ ∈ ((𝐴𝑜 𝑦) ·𝑜 𝐴)))
1918ad2antlr 763 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ (𝐴𝑜 𝑦) ∈ On) ∧ ∅ ∈ (𝐴𝑜 𝑦)) → (((𝐴𝑜 𝑦) ·𝑜 ∅) ∈ ((𝐴𝑜 𝑦) ·𝑜 𝐴) ↔ ∅ ∈ ((𝐴𝑜 𝑦) ·𝑜 𝐴)))
2016, 19sylibd 229 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ (𝐴𝑜 𝑦) ∈ On) ∧ ∅ ∈ (𝐴𝑜 𝑦)) → (∅ ∈ 𝐴 → ∅ ∈ ((𝐴𝑜 𝑦) ·𝑜 𝐴)))
2115, 20sylan 488 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝑦 ∈ On) ∧ ∅ ∈ (𝐴𝑜 𝑦)) → (∅ ∈ 𝐴 → ∅ ∈ ((𝐴𝑜 𝑦) ·𝑜 𝐴)))
22 oesuc 7607 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴𝑜 suc 𝑦) = ((𝐴𝑜 𝑦) ·𝑜 𝐴))
2322eleq2d 2687 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (∅ ∈ (𝐴𝑜 suc 𝑦) ↔ ∅ ∈ ((𝐴𝑜 𝑦) ·𝑜 𝐴)))
2423adantr 481 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝑦 ∈ On) ∧ ∅ ∈ (𝐴𝑜 𝑦)) → (∅ ∈ (𝐴𝑜 suc 𝑦) ↔ ∅ ∈ ((𝐴𝑜 𝑦) ·𝑜 𝐴)))
2521, 24sylibrd 249 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝑦 ∈ On) ∧ ∅ ∈ (𝐴𝑜 𝑦)) → (∅ ∈ 𝐴 → ∅ ∈ (𝐴𝑜 suc 𝑦)))
2625exp31 630 . . . . . . . 8 (𝐴 ∈ On → (𝑦 ∈ On → (∅ ∈ (𝐴𝑜 𝑦) → (∅ ∈ 𝐴 → ∅ ∈ (𝐴𝑜 suc 𝑦)))))
2726com12 32 . . . . . . 7 (𝑦 ∈ On → (𝐴 ∈ On → (∅ ∈ (𝐴𝑜 𝑦) → (∅ ∈ 𝐴 → ∅ ∈ (𝐴𝑜 suc 𝑦)))))
2827com34 91 . . . . . 6 (𝑦 ∈ On → (𝐴 ∈ On → (∅ ∈ 𝐴 → (∅ ∈ (𝐴𝑜 𝑦) → ∅ ∈ (𝐴𝑜 suc 𝑦)))))
2928impd 447 . . . . 5 (𝑦 ∈ On → ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → (∅ ∈ (𝐴𝑜 𝑦) → ∅ ∈ (𝐴𝑜 suc 𝑦))))
30 0ellim 5787 . . . . . . . . . . . 12 (Lim 𝑥 → ∅ ∈ 𝑥)
31 eqimss2 3658 . . . . . . . . . . . . 13 ((𝐴𝑜 ∅) = 1𝑜 → 1𝑜 ⊆ (𝐴𝑜 ∅))
3210, 31syl 17 . . . . . . . . . . . 12 (𝐴 ∈ On → 1𝑜 ⊆ (𝐴𝑜 ∅))
33 oveq2 6658 . . . . . . . . . . . . . 14 (𝑦 = ∅ → (𝐴𝑜 𝑦) = (𝐴𝑜 ∅))
3433sseq2d 3633 . . . . . . . . . . . . 13 (𝑦 = ∅ → (1𝑜 ⊆ (𝐴𝑜 𝑦) ↔ 1𝑜 ⊆ (𝐴𝑜 ∅)))
3534rspcev 3309 . . . . . . . . . . . 12 ((∅ ∈ 𝑥 ∧ 1𝑜 ⊆ (𝐴𝑜 ∅)) → ∃𝑦𝑥 1𝑜 ⊆ (𝐴𝑜 𝑦))
3630, 32, 35syl2an 494 . . . . . . . . . . 11 ((Lim 𝑥𝐴 ∈ On) → ∃𝑦𝑥 1𝑜 ⊆ (𝐴𝑜 𝑦))
37 ssiun 4562 . . . . . . . . . . 11 (∃𝑦𝑥 1𝑜 ⊆ (𝐴𝑜 𝑦) → 1𝑜 𝑦𝑥 (𝐴𝑜 𝑦))
3836, 37syl 17 . . . . . . . . . 10 ((Lim 𝑥𝐴 ∈ On) → 1𝑜 𝑦𝑥 (𝐴𝑜 𝑦))
3938adantrr 753 . . . . . . . . 9 ((Lim 𝑥 ∧ (𝐴 ∈ On ∧ ∅ ∈ 𝐴)) → 1𝑜 𝑦𝑥 (𝐴𝑜 𝑦))
40 vex 3203 . . . . . . . . . . . 12 𝑥 ∈ V
41 oelim 7614 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ ∅ ∈ 𝐴) → (𝐴𝑜 𝑥) = 𝑦𝑥 (𝐴𝑜 𝑦))
4240, 41mpanlr1 722 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ Lim 𝑥) ∧ ∅ ∈ 𝐴) → (𝐴𝑜 𝑥) = 𝑦𝑥 (𝐴𝑜 𝑦))
4342anasss 679 . . . . . . . . . 10 ((𝐴 ∈ On ∧ (Lim 𝑥 ∧ ∅ ∈ 𝐴)) → (𝐴𝑜 𝑥) = 𝑦𝑥 (𝐴𝑜 𝑦))
4443an12s 843 . . . . . . . . 9 ((Lim 𝑥 ∧ (𝐴 ∈ On ∧ ∅ ∈ 𝐴)) → (𝐴𝑜 𝑥) = 𝑦𝑥 (𝐴𝑜 𝑦))
4539, 44sseqtr4d 3642 . . . . . . . 8 ((Lim 𝑥 ∧ (𝐴 ∈ On ∧ ∅ ∈ 𝐴)) → 1𝑜 ⊆ (𝐴𝑜 𝑥))
46 limelon 5788 . . . . . . . . . . . 12 ((𝑥 ∈ V ∧ Lim 𝑥) → 𝑥 ∈ On)
4740, 46mpan 706 . . . . . . . . . . 11 (Lim 𝑥𝑥 ∈ On)
48 oecl 7617 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴𝑜 𝑥) ∈ On)
4948ancoms 469 . . . . . . . . . . 11 ((𝑥 ∈ On ∧ 𝐴 ∈ On) → (𝐴𝑜 𝑥) ∈ On)
5047, 49sylan 488 . . . . . . . . . 10 ((Lim 𝑥𝐴 ∈ On) → (𝐴𝑜 𝑥) ∈ On)
51 eloni 5733 . . . . . . . . . 10 ((𝐴𝑜 𝑥) ∈ On → Ord (𝐴𝑜 𝑥))
52 ordgt0ge1 7577 . . . . . . . . . 10 (Ord (𝐴𝑜 𝑥) → (∅ ∈ (𝐴𝑜 𝑥) ↔ 1𝑜 ⊆ (𝐴𝑜 𝑥)))
5350, 51, 523syl 18 . . . . . . . . 9 ((Lim 𝑥𝐴 ∈ On) → (∅ ∈ (𝐴𝑜 𝑥) ↔ 1𝑜 ⊆ (𝐴𝑜 𝑥)))
5453adantrr 753 . . . . . . . 8 ((Lim 𝑥 ∧ (𝐴 ∈ On ∧ ∅ ∈ 𝐴)) → (∅ ∈ (𝐴𝑜 𝑥) ↔ 1𝑜 ⊆ (𝐴𝑜 𝑥)))
5545, 54mpbird 247 . . . . . . 7 ((Lim 𝑥 ∧ (𝐴 ∈ On ∧ ∅ ∈ 𝐴)) → ∅ ∈ (𝐴𝑜 𝑥))
5655ex 450 . . . . . 6 (Lim 𝑥 → ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → ∅ ∈ (𝐴𝑜 𝑥)))
5756a1dd 50 . . . . 5 (Lim 𝑥 → ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → (∀𝑦𝑥 ∅ ∈ (𝐴𝑜 𝑦) → ∅ ∈ (𝐴𝑜 𝑥))))
582, 4, 6, 8, 12, 29, 57tfinds3 7064 . . . 4 (𝐵 ∈ On → ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → ∅ ∈ (𝐴𝑜 𝐵)))
5958expd 452 . . 3 (𝐵 ∈ On → (𝐴 ∈ On → (∅ ∈ 𝐴 → ∅ ∈ (𝐴𝑜 𝐵))))
6059com12 32 . 2 (𝐴 ∈ On → (𝐵 ∈ On → (∅ ∈ 𝐴 → ∅ ∈ (𝐴𝑜 𝐵))))
6160imp31 448 1 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → ∅ ∈ (𝐴𝑜 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  wrex 2913  Vcvv 3200  wss 3574  c0 3915   ciun 4520  Ord word 5722  Oncon0 5723  Lim wlim 5724  suc csuc 5725  (class class class)co 6650  1𝑜c1o 7553   ·𝑜 comu 7558  𝑜 coe 7559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-omul 7565  df-oexp 7566
This theorem is referenced by:  oeordi  7667  oeordsuc  7674  oeoelem  7678  oelimcl  7680  oeeui  7682  cantnflt  8569  cnfcom  8597  infxpenc  8841  infxpenc2  8845
  Copyright terms: Public domain W3C validator