MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pinq Structured version   Visualization version   Unicode version

Theorem pinq 9749
Description: The representatives of positive integers as positive fractions. (Contributed by NM, 29-Oct-1995.) (Revised by Mario Carneiro, 6-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
pinq  |-  ( A  e.  N.  ->  <. A ,  1o >.  e.  Q. )

Proof of Theorem pinq
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1pi 9705 . . . 4  |-  1o  e.  N.
2 opelxpi 5148 . . . 4  |-  ( ( A  e.  N.  /\  1o  e.  N. )  ->  <. A ,  1o >.  e.  ( N.  X.  N. ) )
31, 2mpan2 707 . . 3  |-  ( A  e.  N.  ->  <. A ,  1o >.  e.  ( N. 
X.  N. ) )
4 nlt1pi 9728 . . . . . 6  |-  -.  ( 2nd `  y )  <N  1o
51elexi 3213 . . . . . . . 8  |-  1o  e.  _V
6 op2ndg 7181 . . . . . . . 8  |-  ( ( A  e.  N.  /\  1o  e.  _V )  -> 
( 2nd `  <. A ,  1o >. )  =  1o )
75, 6mpan2 707 . . . . . . 7  |-  ( A  e.  N.  ->  ( 2nd `  <. A ,  1o >. )  =  1o )
87breq2d 4665 . . . . . 6  |-  ( A  e.  N.  ->  (
( 2nd `  y
)  <N  ( 2nd `  <. A ,  1o >. )  <->  ( 2nd `  y ) 
<N  1o ) )
94, 8mtbiri 317 . . . . 5  |-  ( A  e.  N.  ->  -.  ( 2nd `  y ) 
<N  ( 2nd `  <. A ,  1o >. )
)
109a1d 25 . . . 4  |-  ( A  e.  N.  ->  ( <. A ,  1o >.  ~Q  y  ->  -.  ( 2nd `  y )  <N 
( 2nd `  <. A ,  1o >. )
) )
1110ralrimivw 2967 . . 3  |-  ( A  e.  N.  ->  A. y  e.  ( N.  X.  N. ) ( <. A ,  1o >.  ~Q  y  ->  -.  ( 2nd `  y
)  <N  ( 2nd `  <. A ,  1o >. )
) )
12 breq1 4656 . . . . . 6  |-  ( x  =  <. A ,  1o >.  ->  ( x  ~Q  y 
<-> 
<. A ,  1o >.  ~Q  y ) )
13 fveq2 6191 . . . . . . . 8  |-  ( x  =  <. A ,  1o >.  ->  ( 2nd `  x
)  =  ( 2nd `  <. A ,  1o >. ) )
1413breq2d 4665 . . . . . . 7  |-  ( x  =  <. A ,  1o >.  ->  ( ( 2nd `  y )  <N  ( 2nd `  x )  <->  ( 2nd `  y )  <N  ( 2nd `  <. A ,  1o >. ) ) )
1514notbid 308 . . . . . 6  |-  ( x  =  <. A ,  1o >.  ->  ( -.  ( 2nd `  y )  <N 
( 2nd `  x
)  <->  -.  ( 2nd `  y )  <N  ( 2nd `  <. A ,  1o >. ) ) )
1612, 15imbi12d 334 . . . . 5  |-  ( x  =  <. A ,  1o >.  ->  ( ( x  ~Q  y  ->  -.  ( 2nd `  y ) 
<N  ( 2nd `  x
) )  <->  ( <. A ,  1o >.  ~Q  y  ->  -.  ( 2nd `  y
)  <N  ( 2nd `  <. A ,  1o >. )
) ) )
1716ralbidv 2986 . . . 4  |-  ( x  =  <. A ,  1o >.  ->  ( A. y  e.  ( N.  X.  N. ) ( x  ~Q  y  ->  -.  ( 2nd `  y )  <N  ( 2nd `  x ) )  <->  A. y  e.  ( N.  X.  N. ) (
<. A ,  1o >.  ~Q  y  ->  -.  ( 2nd `  y )  <N 
( 2nd `  <. A ,  1o >. )
) ) )
1817elrab 3363 . . 3  |-  ( <. A ,  1o >.  e.  {
x  e.  ( N. 
X.  N. )  |  A. y  e.  ( N.  X.  N. ) ( x  ~Q  y  ->  -.  ( 2nd `  y ) 
<N  ( 2nd `  x
) ) }  <->  ( <. A ,  1o >.  e.  ( N.  X.  N. )  /\  A. y  e.  ( N.  X.  N. )
( <. A ,  1o >.  ~Q  y  ->  -.  ( 2nd `  y ) 
<N  ( 2nd `  <. A ,  1o >. )
) ) )
193, 11, 18sylanbrc 698 . 2  |-  ( A  e.  N.  ->  <. A ,  1o >.  e.  { x  e.  ( N.  X.  N. )  |  A. y  e.  ( N.  X.  N. ) ( x  ~Q  y  ->  -.  ( 2nd `  y )  <N  ( 2nd `  x ) ) } )
20 df-nq 9734 . 2  |-  Q.  =  { x  e.  ( N.  X.  N. )  | 
A. y  e.  ( N.  X.  N. )
( x  ~Q  y  ->  -.  ( 2nd `  y
)  <N  ( 2nd `  x
) ) }
2119, 20syl6eleqr 2712 1  |-  ( A  e.  N.  ->  <. A ,  1o >.  e.  Q. )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916   _Vcvv 3200   <.cop 4183   class class class wbr 4653    X. cxp 5112   ` cfv 5888   2ndc2nd 7167   1oc1o 7553   N.cnpi 9666    <N clti 9669    ~Q ceq 9673   Q.cnq 9674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fv 5896  df-om 7066  df-2nd 7169  df-1o 7560  df-ni 9694  df-lti 9697  df-nq 9734
This theorem is referenced by:  1nq  9750  archnq  9802  prlem934  9855
  Copyright terms: Public domain W3C validator