MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pnrmopn Structured version   Visualization version   GIF version

Theorem pnrmopn 21147
Description: An open set in a perfectly normal space is a countable union of closed sets. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
pnrmopn ((𝐽 ∈ PNrm ∧ 𝐴𝐽) → ∃𝑓 ∈ ((Clsd‘𝐽) ↑𝑚 ℕ)𝐴 = ran 𝑓)
Distinct variable groups:   𝐴,𝑓   𝑓,𝐽

Proof of Theorem pnrmopn
Dummy variables 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pnrmtop 21145 . . . 4 (𝐽 ∈ PNrm → 𝐽 ∈ Top)
2 eqid 2622 . . . . 5 𝐽 = 𝐽
32opncld 20837 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝐽) → ( 𝐽𝐴) ∈ (Clsd‘𝐽))
41, 3sylan 488 . . 3 ((𝐽 ∈ PNrm ∧ 𝐴𝐽) → ( 𝐽𝐴) ∈ (Clsd‘𝐽))
5 pnrmcld 21146 . . 3 ((𝐽 ∈ PNrm ∧ ( 𝐽𝐴) ∈ (Clsd‘𝐽)) → ∃𝑔 ∈ (𝐽𝑚 ℕ)( 𝐽𝐴) = ran 𝑔)
64, 5syldan 487 . 2 ((𝐽 ∈ PNrm ∧ 𝐴𝐽) → ∃𝑔 ∈ (𝐽𝑚 ℕ)( 𝐽𝐴) = ran 𝑔)
71ad2antrr 762 . . . . . . . 8 (((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽𝑚 ℕ)) ∧ 𝑥 ∈ ℕ) → 𝐽 ∈ Top)
8 elmapi 7879 . . . . . . . . . 10 (𝑔 ∈ (𝐽𝑚 ℕ) → 𝑔:ℕ⟶𝐽)
98adantl 482 . . . . . . . . 9 ((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽𝑚 ℕ)) → 𝑔:ℕ⟶𝐽)
109ffvelrnda 6359 . . . . . . . 8 (((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽𝑚 ℕ)) ∧ 𝑥 ∈ ℕ) → (𝑔𝑥) ∈ 𝐽)
112opncld 20837 . . . . . . . 8 ((𝐽 ∈ Top ∧ (𝑔𝑥) ∈ 𝐽) → ( 𝐽 ∖ (𝑔𝑥)) ∈ (Clsd‘𝐽))
127, 10, 11syl2anc 693 . . . . . . 7 (((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽𝑚 ℕ)) ∧ 𝑥 ∈ ℕ) → ( 𝐽 ∖ (𝑔𝑥)) ∈ (Clsd‘𝐽))
13 eqid 2622 . . . . . . 7 (𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥))) = (𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥)))
1412, 13fmptd 6385 . . . . . 6 ((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽𝑚 ℕ)) → (𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥))):ℕ⟶(Clsd‘𝐽))
15 fvex 6201 . . . . . . 7 (Clsd‘𝐽) ∈ V
16 nnex 11026 . . . . . . 7 ℕ ∈ V
1715, 16elmap 7886 . . . . . 6 ((𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥))) ∈ ((Clsd‘𝐽) ↑𝑚 ℕ) ↔ (𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥))):ℕ⟶(Clsd‘𝐽))
1814, 17sylibr 224 . . . . 5 ((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽𝑚 ℕ)) → (𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥))) ∈ ((Clsd‘𝐽) ↑𝑚 ℕ))
19 iundif2 4587 . . . . . . 7 𝑥 ∈ ℕ ( 𝐽 ∖ (𝑔𝑥)) = ( 𝐽 𝑥 ∈ ℕ (𝑔𝑥))
20 ffn 6045 . . . . . . . . 9 (𝑔:ℕ⟶𝐽𝑔 Fn ℕ)
21 fniinfv 6257 . . . . . . . . 9 (𝑔 Fn ℕ → 𝑥 ∈ ℕ (𝑔𝑥) = ran 𝑔)
229, 20, 213syl 18 . . . . . . . 8 ((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽𝑚 ℕ)) → 𝑥 ∈ ℕ (𝑔𝑥) = ran 𝑔)
2322difeq2d 3728 . . . . . . 7 ((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽𝑚 ℕ)) → ( 𝐽 𝑥 ∈ ℕ (𝑔𝑥)) = ( 𝐽 ran 𝑔))
2419, 23syl5eq 2668 . . . . . 6 ((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽𝑚 ℕ)) → 𝑥 ∈ ℕ ( 𝐽 ∖ (𝑔𝑥)) = ( 𝐽 ran 𝑔))
25 uniexg 6955 . . . . . . . . . . 11 (𝐽 ∈ PNrm → 𝐽 ∈ V)
26 difexg 4808 . . . . . . . . . . 11 ( 𝐽 ∈ V → ( 𝐽 ∖ (𝑔𝑥)) ∈ V)
2725, 26syl 17 . . . . . . . . . 10 (𝐽 ∈ PNrm → ( 𝐽 ∖ (𝑔𝑥)) ∈ V)
2827ralrimivw 2967 . . . . . . . . 9 (𝐽 ∈ PNrm → ∀𝑥 ∈ ℕ ( 𝐽 ∖ (𝑔𝑥)) ∈ V)
2928adantr 481 . . . . . . . 8 ((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽𝑚 ℕ)) → ∀𝑥 ∈ ℕ ( 𝐽 ∖ (𝑔𝑥)) ∈ V)
30 dfiun2g 4552 . . . . . . . 8 (∀𝑥 ∈ ℕ ( 𝐽 ∖ (𝑔𝑥)) ∈ V → 𝑥 ∈ ℕ ( 𝐽 ∖ (𝑔𝑥)) = {𝑓 ∣ ∃𝑥 ∈ ℕ 𝑓 = ( 𝐽 ∖ (𝑔𝑥))})
3129, 30syl 17 . . . . . . 7 ((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽𝑚 ℕ)) → 𝑥 ∈ ℕ ( 𝐽 ∖ (𝑔𝑥)) = {𝑓 ∣ ∃𝑥 ∈ ℕ 𝑓 = ( 𝐽 ∖ (𝑔𝑥))})
3213rnmpt 5371 . . . . . . . 8 ran (𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥))) = {𝑓 ∣ ∃𝑥 ∈ ℕ 𝑓 = ( 𝐽 ∖ (𝑔𝑥))}
3332unieqi 4445 . . . . . . 7 ran (𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥))) = {𝑓 ∣ ∃𝑥 ∈ ℕ 𝑓 = ( 𝐽 ∖ (𝑔𝑥))}
3431, 33syl6eqr 2674 . . . . . 6 ((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽𝑚 ℕ)) → 𝑥 ∈ ℕ ( 𝐽 ∖ (𝑔𝑥)) = ran (𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥))))
3524, 34eqtr3d 2658 . . . . 5 ((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽𝑚 ℕ)) → ( 𝐽 ran 𝑔) = ran (𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥))))
36 rneq 5351 . . . . . . . 8 (𝑓 = (𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥))) → ran 𝑓 = ran (𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥))))
3736unieqd 4446 . . . . . . 7 (𝑓 = (𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥))) → ran 𝑓 = ran (𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥))))
3837eqeq2d 2632 . . . . . 6 (𝑓 = (𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥))) → (( 𝐽 ran 𝑔) = ran 𝑓 ↔ ( 𝐽 ran 𝑔) = ran (𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥)))))
3938rspcev 3309 . . . . 5 (((𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥))) ∈ ((Clsd‘𝐽) ↑𝑚 ℕ) ∧ ( 𝐽 ran 𝑔) = ran (𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥)))) → ∃𝑓 ∈ ((Clsd‘𝐽) ↑𝑚 ℕ)( 𝐽 ran 𝑔) = ran 𝑓)
4018, 35, 39syl2anc 693 . . . 4 ((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽𝑚 ℕ)) → ∃𝑓 ∈ ((Clsd‘𝐽) ↑𝑚 ℕ)( 𝐽 ran 𝑔) = ran 𝑓)
4140ad2ant2r 783 . . 3 (((𝐽 ∈ PNrm ∧ 𝐴𝐽) ∧ (𝑔 ∈ (𝐽𝑚 ℕ) ∧ ( 𝐽𝐴) = ran 𝑔)) → ∃𝑓 ∈ ((Clsd‘𝐽) ↑𝑚 ℕ)( 𝐽 ran 𝑔) = ran 𝑓)
42 difeq2 3722 . . . . . . . 8 (( 𝐽𝐴) = ran 𝑔 → ( 𝐽 ∖ ( 𝐽𝐴)) = ( 𝐽 ran 𝑔))
4342eqcomd 2628 . . . . . . 7 (( 𝐽𝐴) = ran 𝑔 → ( 𝐽 ran 𝑔) = ( 𝐽 ∖ ( 𝐽𝐴)))
44 elssuni 4467 . . . . . . . 8 (𝐴𝐽𝐴 𝐽)
45 dfss4 3858 . . . . . . . 8 (𝐴 𝐽 ↔ ( 𝐽 ∖ ( 𝐽𝐴)) = 𝐴)
4644, 45sylib 208 . . . . . . 7 (𝐴𝐽 → ( 𝐽 ∖ ( 𝐽𝐴)) = 𝐴)
4743, 46sylan9eqr 2678 . . . . . 6 ((𝐴𝐽 ∧ ( 𝐽𝐴) = ran 𝑔) → ( 𝐽 ran 𝑔) = 𝐴)
4847ad2ant2l 782 . . . . 5 (((𝐽 ∈ PNrm ∧ 𝐴𝐽) ∧ (𝑔 ∈ (𝐽𝑚 ℕ) ∧ ( 𝐽𝐴) = ran 𝑔)) → ( 𝐽 ran 𝑔) = 𝐴)
4948eqeq1d 2624 . . . 4 (((𝐽 ∈ PNrm ∧ 𝐴𝐽) ∧ (𝑔 ∈ (𝐽𝑚 ℕ) ∧ ( 𝐽𝐴) = ran 𝑔)) → (( 𝐽 ran 𝑔) = ran 𝑓𝐴 = ran 𝑓))
5049rexbidv 3052 . . 3 (((𝐽 ∈ PNrm ∧ 𝐴𝐽) ∧ (𝑔 ∈ (𝐽𝑚 ℕ) ∧ ( 𝐽𝐴) = ran 𝑔)) → (∃𝑓 ∈ ((Clsd‘𝐽) ↑𝑚 ℕ)( 𝐽 ran 𝑔) = ran 𝑓 ↔ ∃𝑓 ∈ ((Clsd‘𝐽) ↑𝑚 ℕ)𝐴 = ran 𝑓))
5141, 50mpbid 222 . 2 (((𝐽 ∈ PNrm ∧ 𝐴𝐽) ∧ (𝑔 ∈ (𝐽𝑚 ℕ) ∧ ( 𝐽𝐴) = ran 𝑔)) → ∃𝑓 ∈ ((Clsd‘𝐽) ↑𝑚 ℕ)𝐴 = ran 𝑓)
526, 51rexlimddv 3035 1 ((𝐽 ∈ PNrm ∧ 𝐴𝐽) → ∃𝑓 ∈ ((Clsd‘𝐽) ↑𝑚 ℕ)𝐴 = ran 𝑓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  {cab 2608  wral 2912  wrex 2913  Vcvv 3200  cdif 3571  wss 3574   cuni 4436   cint 4475   ciun 4520   ciin 4521  cmpt 4729  ran crn 5115   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  𝑚 cmap 7857  cn 11020  Topctop 20698  Clsdccld 20820  PNrmcpnrm 21116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-i2m1 10004  ax-1ne0 10005  ax-rrecex 10008  ax-cnre 10009
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-map 7859  df-nn 11021  df-top 20699  df-cld 20823  df-nrm 21121  df-pnrm 21123
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator