MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pnrmopn Structured version   Visualization version   Unicode version

Theorem pnrmopn 21147
Description: An open set in a perfectly normal space is a countable union of closed sets. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
pnrmopn  |-  ( ( J  e. PNrm  /\  A  e.  J )  ->  E. f  e.  ( ( Clsd `  J
)  ^m  NN ) A  =  U. ran  f
)
Distinct variable groups:    A, f    f, J

Proof of Theorem pnrmopn
Dummy variables  g  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pnrmtop 21145 . . . 4  |-  ( J  e. PNrm  ->  J  e.  Top )
2 eqid 2622 . . . . 5  |-  U. J  =  U. J
32opncld 20837 . . . 4  |-  ( ( J  e.  Top  /\  A  e.  J )  ->  ( U. J  \  A )  e.  (
Clsd `  J )
)
41, 3sylan 488 . . 3  |-  ( ( J  e. PNrm  /\  A  e.  J )  ->  ( U. J  \  A )  e.  ( Clsd `  J
) )
5 pnrmcld 21146 . . 3  |-  ( ( J  e. PNrm  /\  ( U. J  \  A )  e.  ( Clsd `  J
) )  ->  E. g  e.  ( J  ^m  NN ) ( U. J  \  A )  =  |^| ran  g )
64, 5syldan 487 . 2  |-  ( ( J  e. PNrm  /\  A  e.  J )  ->  E. g  e.  ( J  ^m  NN ) ( U. J  \  A )  =  |^| ran  g )
71ad2antrr 762 . . . . . . . 8  |-  ( ( ( J  e. PNrm  /\  g  e.  ( J  ^m  NN ) )  /\  x  e.  NN )  ->  J  e.  Top )
8 elmapi 7879 . . . . . . . . . 10  |-  ( g  e.  ( J  ^m  NN )  ->  g : NN --> J )
98adantl 482 . . . . . . . . 9  |-  ( ( J  e. PNrm  /\  g  e.  ( J  ^m  NN ) )  ->  g : NN --> J )
109ffvelrnda 6359 . . . . . . . 8  |-  ( ( ( J  e. PNrm  /\  g  e.  ( J  ^m  NN ) )  /\  x  e.  NN )  ->  ( g `  x
)  e.  J )
112opncld 20837 . . . . . . . 8  |-  ( ( J  e.  Top  /\  ( g `  x
)  e.  J )  ->  ( U. J  \  ( g `  x
) )  e.  (
Clsd `  J )
)
127, 10, 11syl2anc 693 . . . . . . 7  |-  ( ( ( J  e. PNrm  /\  g  e.  ( J  ^m  NN ) )  /\  x  e.  NN )  ->  ( U. J  \ 
( g `  x
) )  e.  (
Clsd `  J )
)
13 eqid 2622 . . . . . . 7  |-  ( x  e.  NN  |->  ( U. J  \  ( g `  x ) ) )  =  ( x  e.  NN  |->  ( U. J  \  ( g `  x
) ) )
1412, 13fmptd 6385 . . . . . 6  |-  ( ( J  e. PNrm  /\  g  e.  ( J  ^m  NN ) )  ->  (
x  e.  NN  |->  ( U. J  \  (
g `  x )
) ) : NN --> ( Clsd `  J )
)
15 fvex 6201 . . . . . . 7  |-  ( Clsd `  J )  e.  _V
16 nnex 11026 . . . . . . 7  |-  NN  e.  _V
1715, 16elmap 7886 . . . . . 6  |-  ( ( x  e.  NN  |->  ( U. J  \  (
g `  x )
) )  e.  ( ( Clsd `  J
)  ^m  NN )  <->  ( x  e.  NN  |->  ( U. J  \  (
g `  x )
) ) : NN --> ( Clsd `  J )
)
1814, 17sylibr 224 . . . . 5  |-  ( ( J  e. PNrm  /\  g  e.  ( J  ^m  NN ) )  ->  (
x  e.  NN  |->  ( U. J  \  (
g `  x )
) )  e.  ( ( Clsd `  J
)  ^m  NN )
)
19 iundif2 4587 . . . . . . 7  |-  U_ x  e.  NN  ( U. J  \  ( g `  x
) )  =  ( U. J  \  |^|_ x  e.  NN  ( g `
 x ) )
20 ffn 6045 . . . . . . . . 9  |-  ( g : NN --> J  -> 
g  Fn  NN )
21 fniinfv 6257 . . . . . . . . 9  |-  ( g  Fn  NN  ->  |^|_ x  e.  NN  ( g `  x )  =  |^| ran  g )
229, 20, 213syl 18 . . . . . . . 8  |-  ( ( J  e. PNrm  /\  g  e.  ( J  ^m  NN ) )  ->  |^|_ x  e.  NN  ( g `  x )  =  |^| ran  g )
2322difeq2d 3728 . . . . . . 7  |-  ( ( J  e. PNrm  /\  g  e.  ( J  ^m  NN ) )  ->  ( U. J  \  |^|_ x  e.  NN  ( g `  x ) )  =  ( U. J  \  |^| ran  g ) )
2419, 23syl5eq 2668 . . . . . 6  |-  ( ( J  e. PNrm  /\  g  e.  ( J  ^m  NN ) )  ->  U_ x  e.  NN  ( U. J  \  ( g `  x
) )  =  ( U. J  \  |^| ran  g ) )
25 uniexg 6955 . . . . . . . . . . 11  |-  ( J  e. PNrm  ->  U. J  e.  _V )
26 difexg 4808 . . . . . . . . . . 11  |-  ( U. J  e.  _V  ->  ( U. J  \  (
g `  x )
)  e.  _V )
2725, 26syl 17 . . . . . . . . . 10  |-  ( J  e. PNrm  ->  ( U. J  \  ( g `  x
) )  e.  _V )
2827ralrimivw 2967 . . . . . . . . 9  |-  ( J  e. PNrm  ->  A. x  e.  NN  ( U. J  \  (
g `  x )
)  e.  _V )
2928adantr 481 . . . . . . . 8  |-  ( ( J  e. PNrm  /\  g  e.  ( J  ^m  NN ) )  ->  A. x  e.  NN  ( U. J  \  ( g `  x
) )  e.  _V )
30 dfiun2g 4552 . . . . . . . 8  |-  ( A. x  e.  NN  ( U. J  \  (
g `  x )
)  e.  _V  ->  U_ x  e.  NN  ( U. J  \  (
g `  x )
)  =  U. {
f  |  E. x  e.  NN  f  =  ( U. J  \  (
g `  x )
) } )
3129, 30syl 17 . . . . . . 7  |-  ( ( J  e. PNrm  /\  g  e.  ( J  ^m  NN ) )  ->  U_ x  e.  NN  ( U. J  \  ( g `  x
) )  =  U. { f  |  E. x  e.  NN  f  =  ( U. J  \  ( g `  x
) ) } )
3213rnmpt 5371 . . . . . . . 8  |-  ran  (
x  e.  NN  |->  ( U. J  \  (
g `  x )
) )  =  {
f  |  E. x  e.  NN  f  =  ( U. J  \  (
g `  x )
) }
3332unieqi 4445 . . . . . . 7  |-  U. ran  ( x  e.  NN  |->  ( U. J  \  (
g `  x )
) )  =  U. { f  |  E. x  e.  NN  f  =  ( U. J  \  ( g `  x
) ) }
3431, 33syl6eqr 2674 . . . . . 6  |-  ( ( J  e. PNrm  /\  g  e.  ( J  ^m  NN ) )  ->  U_ x  e.  NN  ( U. J  \  ( g `  x
) )  =  U. ran  ( x  e.  NN  |->  ( U. J  \  (
g `  x )
) ) )
3524, 34eqtr3d 2658 . . . . 5  |-  ( ( J  e. PNrm  /\  g  e.  ( J  ^m  NN ) )  ->  ( U. J  \  |^| ran  g )  =  U. ran  ( x  e.  NN  |->  ( U. J  \  (
g `  x )
) ) )
36 rneq 5351 . . . . . . . 8  |-  ( f  =  ( x  e.  NN  |->  ( U. J  \  ( g `  x
) ) )  ->  ran  f  =  ran  ( x  e.  NN  |->  ( U. J  \  (
g `  x )
) ) )
3736unieqd 4446 . . . . . . 7  |-  ( f  =  ( x  e.  NN  |->  ( U. J  \  ( g `  x
) ) )  ->  U. ran  f  =  U. ran  ( x  e.  NN  |->  ( U. J  \  (
g `  x )
) ) )
3837eqeq2d 2632 . . . . . 6  |-  ( f  =  ( x  e.  NN  |->  ( U. J  \  ( g `  x
) ) )  -> 
( ( U. J  \ 
|^| ran  g )  =  U. ran  f  <->  ( U. J  \  |^| ran  g
)  =  U. ran  ( x  e.  NN  |->  ( U. J  \  (
g `  x )
) ) ) )
3938rspcev 3309 . . . . 5  |-  ( ( ( x  e.  NN  |->  ( U. J  \  (
g `  x )
) )  e.  ( ( Clsd `  J
)  ^m  NN )  /\  ( U. J  \  |^| ran  g )  = 
U. ran  ( x  e.  NN  |->  ( U. J  \  ( g `  x
) ) ) )  ->  E. f  e.  ( ( Clsd `  J
)  ^m  NN )
( U. J  \  |^| ran  g )  = 
U. ran  f )
4018, 35, 39syl2anc 693 . . . 4  |-  ( ( J  e. PNrm  /\  g  e.  ( J  ^m  NN ) )  ->  E. f  e.  ( ( Clsd `  J
)  ^m  NN )
( U. J  \  |^| ran  g )  = 
U. ran  f )
4140ad2ant2r 783 . . 3  |-  ( ( ( J  e. PNrm  /\  A  e.  J )  /\  ( g  e.  ( J  ^m  NN )  /\  ( U. J  \  A )  =  |^| ran  g ) )  ->  E. f  e.  (
( Clsd `  J )  ^m  NN ) ( U. J  \  |^| ran  g
)  =  U. ran  f )
42 difeq2 3722 . . . . . . . 8  |-  ( ( U. J  \  A
)  =  |^| ran  g  ->  ( U. J  \  ( U. J  \  A ) )  =  ( U. J  \  |^| ran  g ) )
4342eqcomd 2628 . . . . . . 7  |-  ( ( U. J  \  A
)  =  |^| ran  g  ->  ( U. J  \ 
|^| ran  g )  =  ( U. J  \  ( U. J  \  A ) ) )
44 elssuni 4467 . . . . . . . 8  |-  ( A  e.  J  ->  A  C_ 
U. J )
45 dfss4 3858 . . . . . . . 8  |-  ( A 
C_  U. J  <->  ( U. J  \  ( U. J  \  A ) )  =  A )
4644, 45sylib 208 . . . . . . 7  |-  ( A  e.  J  ->  ( U. J  \  ( U. J  \  A ) )  =  A )
4743, 46sylan9eqr 2678 . . . . . 6  |-  ( ( A  e.  J  /\  ( U. J  \  A
)  =  |^| ran  g )  ->  ( U. J  \  |^| ran  g )  =  A )
4847ad2ant2l 782 . . . . 5  |-  ( ( ( J  e. PNrm  /\  A  e.  J )  /\  ( g  e.  ( J  ^m  NN )  /\  ( U. J  \  A )  =  |^| ran  g ) )  -> 
( U. J  \  |^| ran  g )  =  A )
4948eqeq1d 2624 . . . 4  |-  ( ( ( J  e. PNrm  /\  A  e.  J )  /\  ( g  e.  ( J  ^m  NN )  /\  ( U. J  \  A )  =  |^| ran  g ) )  -> 
( ( U. J  \ 
|^| ran  g )  =  U. ran  f  <->  A  =  U. ran  f ) )
5049rexbidv 3052 . . 3  |-  ( ( ( J  e. PNrm  /\  A  e.  J )  /\  ( g  e.  ( J  ^m  NN )  /\  ( U. J  \  A )  =  |^| ran  g ) )  -> 
( E. f  e.  ( ( Clsd `  J
)  ^m  NN )
( U. J  \  |^| ran  g )  = 
U. ran  f  <->  E. f  e.  ( ( Clsd `  J
)  ^m  NN ) A  =  U. ran  f
) )
5141, 50mpbid 222 . 2  |-  ( ( ( J  e. PNrm  /\  A  e.  J )  /\  ( g  e.  ( J  ^m  NN )  /\  ( U. J  \  A )  =  |^| ran  g ) )  ->  E. f  e.  (
( Clsd `  J )  ^m  NN ) A  = 
U. ran  f )
526, 51rexlimddv 3035 1  |-  ( ( J  e. PNrm  /\  A  e.  J )  ->  E. f  e.  ( ( Clsd `  J
)  ^m  NN ) A  =  U. ran  f
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   A.wral 2912   E.wrex 2913   _Vcvv 3200    \ cdif 3571    C_ wss 3574   U.cuni 4436   |^|cint 4475   U_ciun 4520   |^|_ciin 4521    |-> cmpt 4729   ran crn 5115    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   NNcn 11020   Topctop 20698   Clsdccld 20820  PNrmcpnrm 21116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-i2m1 10004  ax-1ne0 10005  ax-rrecex 10008  ax-cnre 10009
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-map 7859  df-nn 11021  df-top 20699  df-cld 20823  df-nrm 21121  df-pnrm 21123
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator