Users' Mathboxes Mathbox for Filip Cernatescu < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  problem4 Structured version   Visualization version   GIF version

Theorem problem4 31562
Description: Practice problem 4. Clues: pm3.2i 471 eqcomi 2631 eqtri 2644 subaddrii 10370 recni 10052 7re 11103 6re 11101 ax-1cn 9994 df-7 11084 ax-mp 5 oveq1i 6660 3cn 11095 2cn 11091 df-3 11080 mulid2i 10043 subdiri 10480 mp3an 1424 mulcli 10045 subadd23 10293 oveq2i 6661 oveq12i 6662 3t2e6 11179 mulcomi 10046 subcli 10357 biimpri 218 subadd2i 10369. (Contributed by Filip Cernatescu, 16-Mar-2019.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
problem4.1 𝐴 ∈ ℂ
problem4.2 𝐵 ∈ ℂ
problem4.3 (𝐴 + 𝐵) = 3
problem4.4 ((3 · 𝐴) + (2 · 𝐵)) = 7
Assertion
Ref Expression
problem4 (𝐴 = 1 ∧ 𝐵 = 2)

Proof of Theorem problem4
StepHypRef Expression
1 7re 11103 . . . . . . 7 7 ∈ ℝ
21recni 10052 . . . . . 6 7 ∈ ℂ
3 6re 11101 . . . . . . 7 6 ∈ ℝ
43recni 10052 . . . . . 6 6 ∈ ℂ
5 ax-1cn 9994 . . . . . 6 1 ∈ ℂ
6 df-7 11084 . . . . . . 7 7 = (6 + 1)
76eqcomi 2631 . . . . . 6 (6 + 1) = 7
82, 4, 5, 7subaddrii 10370 . . . . 5 (7 − 6) = 1
98eqcomi 2631 . . . 4 1 = (7 − 6)
10 3cn 11095 . . . . . . . . . . . . 13 3 ∈ ℂ
11 2cn 11091 . . . . . . . . . . . . 13 2 ∈ ℂ
12 df-3 11080 . . . . . . . . . . . . . 14 3 = (2 + 1)
1312eqcomi 2631 . . . . . . . . . . . . 13 (2 + 1) = 3
1410, 11, 5, 13subaddrii 10370 . . . . . . . . . . . 12 (3 − 2) = 1
1514oveq1i 6660 . . . . . . . . . . 11 ((3 − 2) · 𝐴) = (1 · 𝐴)
16 problem4.1 . . . . . . . . . . . 12 𝐴 ∈ ℂ
1716mulid2i 10043 . . . . . . . . . . 11 (1 · 𝐴) = 𝐴
1815, 17eqtri 2644 . . . . . . . . . 10 ((3 − 2) · 𝐴) = 𝐴
1918eqcomi 2631 . . . . . . . . 9 𝐴 = ((3 − 2) · 𝐴)
2010, 11, 16subdiri 10480 . . . . . . . . 9 ((3 − 2) · 𝐴) = ((3 · 𝐴) − (2 · 𝐴))
2119, 20eqtri 2644 . . . . . . . 8 𝐴 = ((3 · 𝐴) − (2 · 𝐴))
2221oveq1i 6660 . . . . . . 7 (𝐴 + 6) = (((3 · 𝐴) − (2 · 𝐴)) + 6)
2310, 16mulcli 10045 . . . . . . . . 9 (3 · 𝐴) ∈ ℂ
2411, 16mulcli 10045 . . . . . . . . 9 (2 · 𝐴) ∈ ℂ
25 subadd23 10293 . . . . . . . . 9 (((3 · 𝐴) ∈ ℂ ∧ (2 · 𝐴) ∈ ℂ ∧ 6 ∈ ℂ) → (((3 · 𝐴) − (2 · 𝐴)) + 6) = ((3 · 𝐴) + (6 − (2 · 𝐴))))
2623, 24, 4, 25mp3an 1424 . . . . . . . 8 (((3 · 𝐴) − (2 · 𝐴)) + 6) = ((3 · 𝐴) + (6 − (2 · 𝐴)))
27 3t2e6 11179 . . . . . . . . . . . . . 14 (3 · 2) = 6
2816, 11mulcomi 10046 . . . . . . . . . . . . . 14 (𝐴 · 2) = (2 · 𝐴)
2927, 28oveq12i 6662 . . . . . . . . . . . . 13 ((3 · 2) − (𝐴 · 2)) = (6 − (2 · 𝐴))
3029eqcomi 2631 . . . . . . . . . . . 12 (6 − (2 · 𝐴)) = ((3 · 2) − (𝐴 · 2))
3110, 16, 11subdiri 10480 . . . . . . . . . . . . . 14 ((3 − 𝐴) · 2) = ((3 · 2) − (𝐴 · 2))
3231eqcomi 2631 . . . . . . . . . . . . 13 ((3 · 2) − (𝐴 · 2)) = ((3 − 𝐴) · 2)
3310, 16subcli 10357 . . . . . . . . . . . . . . . 16 (3 − 𝐴) ∈ ℂ
3411, 33mulcomi 10046 . . . . . . . . . . . . . . 15 (2 · (3 − 𝐴)) = ((3 − 𝐴) · 2)
3534eqcomi 2631 . . . . . . . . . . . . . 14 ((3 − 𝐴) · 2) = (2 · (3 − 𝐴))
36 problem4.2 . . . . . . . . . . . . . . . . . 18 𝐵 ∈ ℂ
37 problem4.3 . . . . . . . . . . . . . . . . . 18 (𝐴 + 𝐵) = 3
3810, 16, 36, 37subaddrii 10370 . . . . . . . . . . . . . . . . 17 (3 − 𝐴) = 𝐵
3938eqcomi 2631 . . . . . . . . . . . . . . . 16 𝐵 = (3 − 𝐴)
4039oveq2i 6661 . . . . . . . . . . . . . . 15 (2 · 𝐵) = (2 · (3 − 𝐴))
4140eqcomi 2631 . . . . . . . . . . . . . 14 (2 · (3 − 𝐴)) = (2 · 𝐵)
4235, 41eqtri 2644 . . . . . . . . . . . . 13 ((3 − 𝐴) · 2) = (2 · 𝐵)
4332, 42eqtri 2644 . . . . . . . . . . . 12 ((3 · 2) − (𝐴 · 2)) = (2 · 𝐵)
4430, 43eqtri 2644 . . . . . . . . . . 11 (6 − (2 · 𝐴)) = (2 · 𝐵)
4544eqcomi 2631 . . . . . . . . . 10 (2 · 𝐵) = (6 − (2 · 𝐴))
4645oveq2i 6661 . . . . . . . . 9 ((3 · 𝐴) + (2 · 𝐵)) = ((3 · 𝐴) + (6 − (2 · 𝐴)))
4746eqcomi 2631 . . . . . . . 8 ((3 · 𝐴) + (6 − (2 · 𝐴))) = ((3 · 𝐴) + (2 · 𝐵))
4826, 47eqtri 2644 . . . . . . 7 (((3 · 𝐴) − (2 · 𝐴)) + 6) = ((3 · 𝐴) + (2 · 𝐵))
4922, 48eqtri 2644 . . . . . 6 (𝐴 + 6) = ((3 · 𝐴) + (2 · 𝐵))
50 problem4.4 . . . . . 6 ((3 · 𝐴) + (2 · 𝐵)) = 7
5149, 50eqtri 2644 . . . . 5 (𝐴 + 6) = 7
522, 4, 16subadd2i 10369 . . . . . 6 ((7 − 6) = 𝐴 ↔ (𝐴 + 6) = 7)
5352biimpri 218 . . . . 5 ((𝐴 + 6) = 7 → (7 − 6) = 𝐴)
5451, 53ax-mp 5 . . . 4 (7 − 6) = 𝐴
559, 54eqtri 2644 . . 3 1 = 𝐴
5655eqcomi 2631 . 2 𝐴 = 1
5756oveq2i 6661 . . . 4 (3 − 𝐴) = (3 − 1)
5810, 5, 11subadd2i 10369 . . . . . 6 ((3 − 1) = 2 ↔ (2 + 1) = 3)
5958biimpri 218 . . . . 5 ((2 + 1) = 3 → (3 − 1) = 2)
6013, 59ax-mp 5 . . . 4 (3 − 1) = 2
6157, 60eqtri 2644 . . 3 (3 − 𝐴) = 2
6239, 61eqtri 2644 . 2 𝐵 = 2
6356, 62pm3.2i 471 1 (𝐴 = 1 ∧ 𝐵 = 2)
Colors of variables: wff setvar class
Syntax hints:  wa 384   = wceq 1483  wcel 1990  (class class class)co 6650  cc 9934  1c1 9937   + caddc 9939   · cmul 9941  cmin 10266  2c2 11070  3c3 11071  6c6 11074  7c7 11075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-ltxr 10079  df-sub 10268  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator