![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulid2i | Structured version Visualization version GIF version |
Description: Identity law for multiplication. (Contributed by NM, 14-Feb-1995.) |
Ref | Expression |
---|---|
axi.1 | ⊢ 𝐴 ∈ ℂ |
Ref | Expression |
---|---|
mulid2i | ⊢ (1 · 𝐴) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | mulid2 10038 | . 2 ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (1 · 𝐴) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1483 ∈ wcel 1990 (class class class)co 6650 ℂcc 9934 1c1 9937 · cmul 9941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-mulcl 9998 ax-mulcom 10000 ax-mulass 10002 ax-distr 10003 ax-1rid 10006 ax-cnre 10009 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 df-ov 6653 |
This theorem is referenced by: 00id 10211 halfpm6th 11253 div4p1lem1div2 11287 3halfnz 11456 crreczi 12989 sq10 13048 fac2 13066 hashxplem 13220 bpoly1 14782 bpoly2 14788 bpoly3 14789 bpoly4 14790 efival 14882 ef01bndlem 14914 3dvdsdec 15054 3dvdsdecOLD 15055 3dvds2dec 15056 3dvds2decOLD 15057 odd2np1lem 15064 m1expo 15092 m1exp1 15093 nno 15098 divalglem5 15120 gcdaddmlem 15245 prmo2 15744 dec5nprm 15770 2exp8 15796 13prm 15823 23prm 15826 37prm 15828 43prm 15829 83prm 15830 139prm 15831 163prm 15832 317prm 15833 631prm 15834 1259lem2 15839 1259lem3 15840 1259lem4 15841 1259lem5 15842 2503lem1 15844 2503lem2 15845 2503lem3 15846 2503prm 15847 4001lem1 15848 4001lem2 15849 4001lem3 15850 4001lem4 15851 cnmsgnsubg 19923 sin2pim 24237 cos2pim 24238 sincosq3sgn 24252 sincosq4sgn 24253 tangtx 24257 sincosq1eq 24264 sincos4thpi 24265 sincos6thpi 24267 pige3 24269 abssinper 24270 ang180lem2 24540 ang180lem3 24541 1cubr 24569 asin1 24621 dvatan 24662 log2cnv 24671 log2ublem3 24675 log2ub 24676 logfacbnd3 24948 bclbnd 25005 bpos1 25008 bposlem8 25016 lgsdilem 25049 lgsdir2lem1 25050 lgsdir2lem4 25053 lgsdir2lem5 25054 lgsdir2 25055 lgsdir 25057 2lgsoddprmlem3c 25137 dchrisum0flblem1 25197 rpvmasum2 25201 log2sumbnd 25233 ax5seglem7 25815 ex-fl 27304 ipasslem10 27694 hisubcomi 27961 normlem1 27967 normlem9 27975 norm-ii-i 27994 normsubi 27998 polid2i 28014 lnophmlem2 28876 lnfn0i 28901 nmopcoi 28954 unierri 28963 addltmulALT 29305 dpmul4 29622 sgnmul 30604 logdivsqrle 30728 hgt750lem 30729 hgt750lem2 30730 problem4 31562 quad3 31564 cnndvlem1 32528 sin2h 33399 poimirlem26 33435 cntotbnd 33595 areaquad 37802 coskpi2 40077 stoweidlem13 40230 wallispilem2 40283 wallispilem4 40285 wallispi2lem1 40288 dirkerper 40313 dirkertrigeqlem1 40315 dirkercncflem1 40320 sqwvfoura 40445 sqwvfourb 40446 fourierswlem 40447 fouriersw 40448 257prm 41473 fmtnofac1 41482 fmtno4prmfac 41484 fmtno4nprmfac193 41486 fmtno5faclem1 41491 fmtno5faclem2 41492 139prmALT 41511 127prm 41515 tgoldbach 41705 tgoldbachOLD 41712 |
Copyright terms: Public domain | W3C validator |