MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cdadom1 Structured version   Visualization version   GIF version

Theorem cdadom1 9008
Description: Ordering law for cardinal addition. Exercise 4.56(f) of [Mendelson] p. 258. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
cdadom1 (𝐴𝐵 → (𝐴 +𝑐 𝐶) ≼ (𝐵 +𝑐 𝐶))

Proof of Theorem cdadom1
StepHypRef Expression
1 snex 4908 . . . . 5 {∅} ∈ V
21xpdom1 8059 . . . 4 (𝐴𝐵 → (𝐴 × {∅}) ≼ (𝐵 × {∅}))
3 snex 4908 . . . . . 6 {1𝑜} ∈ V
4 xpexg 6960 . . . . . 6 ((𝐶 ∈ V ∧ {1𝑜} ∈ V) → (𝐶 × {1𝑜}) ∈ V)
53, 4mpan2 707 . . . . 5 (𝐶 ∈ V → (𝐶 × {1𝑜}) ∈ V)
6 domrefg 7990 . . . . 5 ((𝐶 × {1𝑜}) ∈ V → (𝐶 × {1𝑜}) ≼ (𝐶 × {1𝑜}))
75, 6syl 17 . . . 4 (𝐶 ∈ V → (𝐶 × {1𝑜}) ≼ (𝐶 × {1𝑜}))
8 xp01disj 7576 . . . . 5 ((𝐵 × {∅}) ∩ (𝐶 × {1𝑜})) = ∅
9 undom 8048 . . . . 5 ((((𝐴 × {∅}) ≼ (𝐵 × {∅}) ∧ (𝐶 × {1𝑜}) ≼ (𝐶 × {1𝑜})) ∧ ((𝐵 × {∅}) ∩ (𝐶 × {1𝑜})) = ∅) → ((𝐴 × {∅}) ∪ (𝐶 × {1𝑜})) ≼ ((𝐵 × {∅}) ∪ (𝐶 × {1𝑜})))
108, 9mpan2 707 . . . 4 (((𝐴 × {∅}) ≼ (𝐵 × {∅}) ∧ (𝐶 × {1𝑜}) ≼ (𝐶 × {1𝑜})) → ((𝐴 × {∅}) ∪ (𝐶 × {1𝑜})) ≼ ((𝐵 × {∅}) ∪ (𝐶 × {1𝑜})))
112, 7, 10syl2an 494 . . 3 ((𝐴𝐵𝐶 ∈ V) → ((𝐴 × {∅}) ∪ (𝐶 × {1𝑜})) ≼ ((𝐵 × {∅}) ∪ (𝐶 × {1𝑜})))
12 reldom 7961 . . . . 5 Rel ≼
1312brrelexi 5158 . . . 4 (𝐴𝐵𝐴 ∈ V)
14 cdaval 8992 . . . 4 ((𝐴 ∈ V ∧ 𝐶 ∈ V) → (𝐴 +𝑐 𝐶) = ((𝐴 × {∅}) ∪ (𝐶 × {1𝑜})))
1513, 14sylan 488 . . 3 ((𝐴𝐵𝐶 ∈ V) → (𝐴 +𝑐 𝐶) = ((𝐴 × {∅}) ∪ (𝐶 × {1𝑜})))
1612brrelex2i 5159 . . . 4 (𝐴𝐵𝐵 ∈ V)
17 cdaval 8992 . . . 4 ((𝐵 ∈ V ∧ 𝐶 ∈ V) → (𝐵 +𝑐 𝐶) = ((𝐵 × {∅}) ∪ (𝐶 × {1𝑜})))
1816, 17sylan 488 . . 3 ((𝐴𝐵𝐶 ∈ V) → (𝐵 +𝑐 𝐶) = ((𝐵 × {∅}) ∪ (𝐶 × {1𝑜})))
1911, 15, 183brtr4d 4685 . 2 ((𝐴𝐵𝐶 ∈ V) → (𝐴 +𝑐 𝐶) ≼ (𝐵 +𝑐 𝐶))
20 simpr 477 . . . . 5 ((𝐴𝐵 ∧ ¬ 𝐶 ∈ V) → ¬ 𝐶 ∈ V)
2120intnand 962 . . . 4 ((𝐴𝐵 ∧ ¬ 𝐶 ∈ V) → ¬ (𝐴 ∈ V ∧ 𝐶 ∈ V))
22 cdafn 8991 . . . . . 6 +𝑐 Fn (V × V)
23 fndm 5990 . . . . . 6 ( +𝑐 Fn (V × V) → dom +𝑐 = (V × V))
2422, 23ax-mp 5 . . . . 5 dom +𝑐 = (V × V)
2524ndmov 6818 . . . 4 (¬ (𝐴 ∈ V ∧ 𝐶 ∈ V) → (𝐴 +𝑐 𝐶) = ∅)
2621, 25syl 17 . . 3 ((𝐴𝐵 ∧ ¬ 𝐶 ∈ V) → (𝐴 +𝑐 𝐶) = ∅)
27 ovex 6678 . . . 4 (𝐵 +𝑐 𝐶) ∈ V
28270dom 8090 . . 3 ∅ ≼ (𝐵 +𝑐 𝐶)
2926, 28syl6eqbr 4692 . 2 ((𝐴𝐵 ∧ ¬ 𝐶 ∈ V) → (𝐴 +𝑐 𝐶) ≼ (𝐵 +𝑐 𝐶))
3019, 29pm2.61dan 832 1 (𝐴𝐵 → (𝐴 +𝑐 𝐶) ≼ (𝐵 +𝑐 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  cun 3572  cin 3573  c0 3915  {csn 4177   class class class wbr 4653   × cxp 5112  dom cdm 5114   Fn wfn 5883  (class class class)co 6650  1𝑜c1o 7553  cdom 7953   +𝑐 ccda 8989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-1o 7560  df-en 7956  df-dom 7957  df-cda 8990
This theorem is referenced by:  cdadom2  9009  cdalepw  9018  unctb  9027  infdif  9031  gchcdaidm  9490  gchpwdom  9492  gchhar  9501
  Copyright terms: Public domain W3C validator