| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r1val1 | Structured version Visualization version Unicode version | ||
| Description: The value of the cumulative hierarchy of sets function expressed recursively. Theorem 7Q of [Enderton] p. 202. (Contributed by NM, 25-Nov-2003.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| r1val1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 477 |
. . . . . 6
| |
| 2 | 1 | fveq2d 6195 |
. . . . 5
|
| 3 | r10 8631 |
. . . . 5
| |
| 4 | 2, 3 | syl6eq 2672 |
. . . 4
|
| 5 | 0ss 3972 |
. . . . 5
| |
| 6 | 5 | a1i 11 |
. . . 4
|
| 7 | 4, 6 | eqsstrd 3639 |
. . 3
|
| 8 | nfv 1843 |
. . . . 5
| |
| 9 | nfcv 2764 |
. . . . . 6
| |
| 10 | nfiu1 4550 |
. . . . . 6
| |
| 11 | 9, 10 | nfss 3596 |
. . . . 5
|
| 12 | simpr 477 |
. . . . . . . . . 10
| |
| 13 | 12 | fveq2d 6195 |
. . . . . . . . 9
|
| 14 | eleq1 2689 |
. . . . . . . . . . . 12
| |
| 15 | 14 | biimpac 503 |
. . . . . . . . . . 11
|
| 16 | r1funlim 8629 |
. . . . . . . . . . . . 13
| |
| 17 | 16 | simpri 478 |
. . . . . . . . . . . 12
|
| 18 | limsuc 7049 |
. . . . . . . . . . . 12
| |
| 19 | 17, 18 | ax-mp 5 |
. . . . . . . . . . 11
|
| 20 | 15, 19 | sylibr 224 |
. . . . . . . . . 10
|
| 21 | r1sucg 8632 |
. . . . . . . . . 10
| |
| 22 | 20, 21 | syl 17 |
. . . . . . . . 9
|
| 23 | 13, 22 | eqtrd 2656 |
. . . . . . . 8
|
| 24 | vex 3203 |
. . . . . . . . . . 11
| |
| 25 | 24 | sucid 5804 |
. . . . . . . . . 10
|
| 26 | 25, 12 | syl5eleqr 2708 |
. . . . . . . . 9
|
| 27 | ssiun2 4563 |
. . . . . . . . 9
| |
| 28 | 26, 27 | syl 17 |
. . . . . . . 8
|
| 29 | 23, 28 | eqsstrd 3639 |
. . . . . . 7
|
| 30 | 29 | ex 450 |
. . . . . 6
|
| 31 | 30 | a1d 25 |
. . . . 5
|
| 32 | 8, 11, 31 | rexlimd 3026 |
. . . 4
|
| 33 | 32 | imp 445 |
. . 3
|
| 34 | r1limg 8634 |
. . . . 5
| |
| 35 | r1tr 8639 |
. . . . . . . . 9
| |
| 36 | dftr4 4757 |
. . . . . . . . 9
| |
| 37 | 35, 36 | mpbi 220 |
. . . . . . . 8
|
| 38 | 37 | a1i 11 |
. . . . . . 7
|
| 39 | 38 | ralrimivw 2967 |
. . . . . 6
|
| 40 | ss2iun 4536 |
. . . . . 6
| |
| 41 | 39, 40 | syl 17 |
. . . . 5
|
| 42 | 34, 41 | eqsstrd 3639 |
. . . 4
|
| 43 | 42 | adantrl 752 |
. . 3
|
| 44 | limord 5784 |
. . . . . . 7
| |
| 45 | 17, 44 | ax-mp 5 |
. . . . . 6
|
| 46 | ordsson 6989 |
. . . . . 6
| |
| 47 | 45, 46 | ax-mp 5 |
. . . . 5
|
| 48 | 47 | sseli 3599 |
. . . 4
|
| 49 | onzsl 7046 |
. . . 4
| |
| 50 | 48, 49 | sylib 208 |
. . 3
|
| 51 | 7, 33, 43, 50 | mpjao3dan 1395 |
. 2
|
| 52 | ordtr1 5767 |
. . . . . . . 8
| |
| 53 | 45, 52 | ax-mp 5 |
. . . . . . 7
|
| 54 | 53 | ancoms 469 |
. . . . . 6
|
| 55 | 54, 21 | syl 17 |
. . . . 5
|
| 56 | simpr 477 |
. . . . . . 7
| |
| 57 | ordelord 5745 |
. . . . . . . . . 10
| |
| 58 | 45, 57 | mpan 706 |
. . . . . . . . 9
|
| 59 | 58 | adantr 481 |
. . . . . . . 8
|
| 60 | ordelsuc 7020 |
. . . . . . . 8
| |
| 61 | 56, 59, 60 | syl2anc 693 |
. . . . . . 7
|
| 62 | 56, 61 | mpbid 222 |
. . . . . 6
|
| 63 | 54, 19 | sylib 208 |
. . . . . . 7
|
| 64 | simpl 473 |
. . . . . . 7
| |
| 65 | r1ord3g 8642 |
. . . . . . 7
| |
| 66 | 63, 64, 65 | syl2anc 693 |
. . . . . 6
|
| 67 | 62, 66 | mpd 15 |
. . . . 5
|
| 68 | 55, 67 | eqsstr3d 3640 |
. . . 4
|
| 69 | 68 | ralrimiva 2966 |
. . 3
|
| 70 | iunss 4561 |
. . 3
| |
| 71 | 69, 70 | sylibr 224 |
. 2
|
| 72 | 51, 71 | eqssd 3620 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-r1 8627 |
| This theorem is referenced by: rankr1ai 8661 r1val3 8701 |
| Copyright terms: Public domain | W3C validator |