MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1val1 Structured version   Visualization version   Unicode version

Theorem r1val1 8649
Description: The value of the cumulative hierarchy of sets function expressed recursively. Theorem 7Q of [Enderton] p. 202. (Contributed by NM, 25-Nov-2003.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
r1val1  |-  ( A  e.  dom  R1  ->  ( R1 `  A )  =  U_ x  e.  A  ~P ( R1
`  x ) )
Distinct variable group:    x, A

Proof of Theorem r1val1
StepHypRef Expression
1 simpr 477 . . . . . 6  |-  ( ( A  e.  dom  R1  /\  A  =  (/) )  ->  A  =  (/) )
21fveq2d 6195 . . . . 5  |-  ( ( A  e.  dom  R1  /\  A  =  (/) )  -> 
( R1 `  A
)  =  ( R1
`  (/) ) )
3 r10 8631 . . . . 5  |-  ( R1
`  (/) )  =  (/)
42, 3syl6eq 2672 . . . 4  |-  ( ( A  e.  dom  R1  /\  A  =  (/) )  -> 
( R1 `  A
)  =  (/) )
5 0ss 3972 . . . . 5  |-  (/)  C_  U_ x  e.  A  ~P ( R1 `  x )
65a1i 11 . . . 4  |-  ( ( A  e.  dom  R1  /\  A  =  (/) )  ->  (/)  C_  U_ x  e.  A  ~P ( R1 `  x
) )
74, 6eqsstrd 3639 . . 3  |-  ( ( A  e.  dom  R1  /\  A  =  (/) )  -> 
( R1 `  A
)  C_  U_ x  e.  A  ~P ( R1
`  x ) )
8 nfv 1843 . . . . 5  |-  F/ x  A  e.  dom  R1
9 nfcv 2764 . . . . . 6  |-  F/_ x
( R1 `  A
)
10 nfiu1 4550 . . . . . 6  |-  F/_ x U_ x  e.  A  ~P ( R1 `  x
)
119, 10nfss 3596 . . . . 5  |-  F/ x
( R1 `  A
)  C_  U_ x  e.  A  ~P ( R1
`  x )
12 simpr 477 . . . . . . . . . 10  |-  ( ( A  e.  dom  R1  /\  A  =  suc  x
)  ->  A  =  suc  x )
1312fveq2d 6195 . . . . . . . . 9  |-  ( ( A  e.  dom  R1  /\  A  =  suc  x
)  ->  ( R1 `  A )  =  ( R1 `  suc  x
) )
14 eleq1 2689 . . . . . . . . . . . 12  |-  ( A  =  suc  x  -> 
( A  e.  dom  R1  <->  suc  x  e.  dom  R1 ) )
1514biimpac 503 . . . . . . . . . . 11  |-  ( ( A  e.  dom  R1  /\  A  =  suc  x
)  ->  suc  x  e. 
dom  R1 )
16 r1funlim 8629 . . . . . . . . . . . . 13  |-  ( Fun 
R1  /\  Lim  dom  R1 )
1716simpri 478 . . . . . . . . . . . 12  |-  Lim  dom  R1
18 limsuc 7049 . . . . . . . . . . . 12  |-  ( Lim 
dom  R1  ->  ( x  e.  dom  R1  <->  suc  x  e. 
dom  R1 ) )
1917, 18ax-mp 5 . . . . . . . . . . 11  |-  ( x  e.  dom  R1  <->  suc  x  e. 
dom  R1 )
2015, 19sylibr 224 . . . . . . . . . 10  |-  ( ( A  e.  dom  R1  /\  A  =  suc  x
)  ->  x  e.  dom  R1 )
21 r1sucg 8632 . . . . . . . . . 10  |-  ( x  e.  dom  R1  ->  ( R1 `  suc  x
)  =  ~P ( R1 `  x ) )
2220, 21syl 17 . . . . . . . . 9  |-  ( ( A  e.  dom  R1  /\  A  =  suc  x
)  ->  ( R1 ` 
suc  x )  =  ~P ( R1 `  x ) )
2313, 22eqtrd 2656 . . . . . . . 8  |-  ( ( A  e.  dom  R1  /\  A  =  suc  x
)  ->  ( R1 `  A )  =  ~P ( R1 `  x ) )
24 vex 3203 . . . . . . . . . . 11  |-  x  e. 
_V
2524sucid 5804 . . . . . . . . . 10  |-  x  e. 
suc  x
2625, 12syl5eleqr 2708 . . . . . . . . 9  |-  ( ( A  e.  dom  R1  /\  A  =  suc  x
)  ->  x  e.  A )
27 ssiun2 4563 . . . . . . . . 9  |-  ( x  e.  A  ->  ~P ( R1 `  x ) 
C_  U_ x  e.  A  ~P ( R1 `  x
) )
2826, 27syl 17 . . . . . . . 8  |-  ( ( A  e.  dom  R1  /\  A  =  suc  x
)  ->  ~P ( R1 `  x )  C_  U_ x  e.  A  ~P ( R1 `  x ) )
2923, 28eqsstrd 3639 . . . . . . 7  |-  ( ( A  e.  dom  R1  /\  A  =  suc  x
)  ->  ( R1 `  A )  C_  U_ x  e.  A  ~P ( R1 `  x ) )
3029ex 450 . . . . . 6  |-  ( A  e.  dom  R1  ->  ( A  =  suc  x  ->  ( R1 `  A
)  C_  U_ x  e.  A  ~P ( R1
`  x ) ) )
3130a1d 25 . . . . 5  |-  ( A  e.  dom  R1  ->  ( x  e.  On  ->  ( A  =  suc  x  ->  ( R1 `  A
)  C_  U_ x  e.  A  ~P ( R1
`  x ) ) ) )
328, 11, 31rexlimd 3026 . . . 4  |-  ( A  e.  dom  R1  ->  ( E. x  e.  On  A  =  suc  x  -> 
( R1 `  A
)  C_  U_ x  e.  A  ~P ( R1
`  x ) ) )
3332imp 445 . . 3  |-  ( ( A  e.  dom  R1  /\ 
E. x  e.  On  A  =  suc  x )  ->  ( R1 `  A )  C_  U_ x  e.  A  ~P ( R1 `  x ) )
34 r1limg 8634 . . . . 5  |-  ( ( A  e.  dom  R1  /\ 
Lim  A )  -> 
( R1 `  A
)  =  U_ x  e.  A  ( R1 `  x ) )
35 r1tr 8639 . . . . . . . . 9  |-  Tr  ( R1 `  x )
36 dftr4 4757 . . . . . . . . 9  |-  ( Tr  ( R1 `  x
)  <->  ( R1 `  x )  C_  ~P ( R1 `  x ) )
3735, 36mpbi 220 . . . . . . . 8  |-  ( R1
`  x )  C_  ~P ( R1 `  x
)
3837a1i 11 . . . . . . 7  |-  ( ( A  e.  dom  R1  /\ 
Lim  A )  -> 
( R1 `  x
)  C_  ~P ( R1 `  x ) )
3938ralrimivw 2967 . . . . . 6  |-  ( ( A  e.  dom  R1  /\ 
Lim  A )  ->  A. x  e.  A  ( R1 `  x ) 
C_  ~P ( R1 `  x ) )
40 ss2iun 4536 . . . . . 6  |-  ( A. x  e.  A  ( R1 `  x )  C_  ~P ( R1 `  x
)  ->  U_ x  e.  A  ( R1 `  x )  C_  U_ x  e.  A  ~P ( R1 `  x ) )
4139, 40syl 17 . . . . 5  |-  ( ( A  e.  dom  R1  /\ 
Lim  A )  ->  U_ x  e.  A  ( R1 `  x ) 
C_  U_ x  e.  A  ~P ( R1 `  x
) )
4234, 41eqsstrd 3639 . . . 4  |-  ( ( A  e.  dom  R1  /\ 
Lim  A )  -> 
( R1 `  A
)  C_  U_ x  e.  A  ~P ( R1
`  x ) )
4342adantrl 752 . . 3  |-  ( ( A  e.  dom  R1  /\  ( A  e.  _V  /\ 
Lim  A ) )  ->  ( R1 `  A )  C_  U_ x  e.  A  ~P ( R1 `  x ) )
44 limord 5784 . . . . . . 7  |-  ( Lim 
dom  R1  ->  Ord  dom  R1 )
4517, 44ax-mp 5 . . . . . 6  |-  Ord  dom  R1
46 ordsson 6989 . . . . . 6  |-  ( Ord 
dom  R1  ->  dom  R1  C_  On )
4745, 46ax-mp 5 . . . . 5  |-  dom  R1  C_  On
4847sseli 3599 . . . 4  |-  ( A  e.  dom  R1  ->  A  e.  On )
49 onzsl 7046 . . . 4  |-  ( A  e.  On  <->  ( A  =  (/)  \/  E. x  e.  On  A  =  suc  x  \/  ( A  e.  _V  /\  Lim  A
) ) )
5048, 49sylib 208 . . 3  |-  ( A  e.  dom  R1  ->  ( A  =  (/)  \/  E. x  e.  On  A  =  suc  x  \/  ( A  e.  _V  /\  Lim  A ) ) )
517, 33, 43, 50mpjao3dan 1395 . 2  |-  ( A  e.  dom  R1  ->  ( R1 `  A ) 
C_  U_ x  e.  A  ~P ( R1 `  x
) )
52 ordtr1 5767 . . . . . . . 8  |-  ( Ord 
dom  R1  ->  ( ( x  e.  A  /\  A  e.  dom  R1 )  ->  x  e.  dom  R1 ) )
5345, 52ax-mp 5 . . . . . . 7  |-  ( ( x  e.  A  /\  A  e.  dom  R1 )  ->  x  e.  dom  R1 )
5453ancoms 469 . . . . . 6  |-  ( ( A  e.  dom  R1  /\  x  e.  A )  ->  x  e.  dom  R1 )
5554, 21syl 17 . . . . 5  |-  ( ( A  e.  dom  R1  /\  x  e.  A )  ->  ( R1 `  suc  x )  =  ~P ( R1 `  x ) )
56 simpr 477 . . . . . . 7  |-  ( ( A  e.  dom  R1  /\  x  e.  A )  ->  x  e.  A
)
57 ordelord 5745 . . . . . . . . . 10  |-  ( ( Ord  dom  R1  /\  A  e.  dom  R1 )  ->  Ord  A )
5845, 57mpan 706 . . . . . . . . 9  |-  ( A  e.  dom  R1  ->  Ord 
A )
5958adantr 481 . . . . . . . 8  |-  ( ( A  e.  dom  R1  /\  x  e.  A )  ->  Ord  A )
60 ordelsuc 7020 . . . . . . . 8  |-  ( ( x  e.  A  /\  Ord  A )  ->  (
x  e.  A  <->  suc  x  C_  A ) )
6156, 59, 60syl2anc 693 . . . . . . 7  |-  ( ( A  e.  dom  R1  /\  x  e.  A )  ->  ( x  e.  A  <->  suc  x  C_  A
) )
6256, 61mpbid 222 . . . . . 6  |-  ( ( A  e.  dom  R1  /\  x  e.  A )  ->  suc  x  C_  A
)
6354, 19sylib 208 . . . . . . 7  |-  ( ( A  e.  dom  R1  /\  x  e.  A )  ->  suc  x  e.  dom  R1 )
64 simpl 473 . . . . . . 7  |-  ( ( A  e.  dom  R1  /\  x  e.  A )  ->  A  e.  dom  R1 )
65 r1ord3g 8642 . . . . . . 7  |-  ( ( suc  x  e.  dom  R1 
/\  A  e.  dom  R1 )  ->  ( suc  x  C_  A  ->  ( R1 `  suc  x ) 
C_  ( R1 `  A ) ) )
6663, 64, 65syl2anc 693 . . . . . 6  |-  ( ( A  e.  dom  R1  /\  x  e.  A )  ->  ( suc  x  C_  A  ->  ( R1 ` 
suc  x )  C_  ( R1 `  A ) ) )
6762, 66mpd 15 . . . . 5  |-  ( ( A  e.  dom  R1  /\  x  e.  A )  ->  ( R1 `  suc  x )  C_  ( R1 `  A ) )
6855, 67eqsstr3d 3640 . . . 4  |-  ( ( A  e.  dom  R1  /\  x  e.  A )  ->  ~P ( R1
`  x )  C_  ( R1 `  A ) )
6968ralrimiva 2966 . . 3  |-  ( A  e.  dom  R1  ->  A. x  e.  A  ~P ( R1 `  x ) 
C_  ( R1 `  A ) )
70 iunss 4561 . . 3  |-  ( U_ x  e.  A  ~P ( R1 `  x ) 
C_  ( R1 `  A )  <->  A. x  e.  A  ~P ( R1 `  x )  C_  ( R1 `  A ) )
7169, 70sylibr 224 . 2  |-  ( A  e.  dom  R1  ->  U_ x  e.  A  ~P ( R1 `  x ) 
C_  ( R1 `  A ) )
7251, 71eqssd 3620 1  |-  ( A  e.  dom  R1  ->  ( R1 `  A )  =  U_ x  e.  A  ~P ( R1
`  x ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    \/ w3o 1036    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   U_ciun 4520   Tr wtr 4752   dom cdm 5114   Ord word 5722   Oncon0 5723   Lim wlim 5724   suc csuc 5725   Fun wfun 5882   ` cfv 5888   R1cr1 8625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-r1 8627
This theorem is referenced by:  rankr1ai  8661  r1val3  8701
  Copyright terms: Public domain W3C validator